Грасгоф, Франц
Шаблон:Однофамильцы Шаблон:Учёный Гра́сгоф, Франц (Шаблон:Lang-de; Шаблон:ДР, Дюссельдорф — Шаблон:ДС, Карлсруэ) — немецкий Шаблон:Механик и машиностроитель.
Биография
Детство и юность
Франц Грасгоф родился 11 июля 1826 года в семье Елизаветы Софии Доротеи Флорентины Брюггеман (Шаблон:Lang-de) и Карла Грасгофа (Шаблон:Lang-de), преподавателя классической филологии в Шаблон:Нп5. Его дядей был придворный художник Отто Грасгоф. Несмотря на гуманитарное окружение в семье, Франц рано проявил интерес к технике; уже с 15 лет он работал слесарем, посещая после работы ремесленное училище[1].
В октябре 1844 года Франц Грасгоф поступил в Шаблон:Нп5, где изучал математику, физику и машиностроение. Однако в 1847 году Грасгоф, прервав обучение, пошёл на военную службу: год он прослужил добровольцем в стрелковом батальоне, а в 1848—1851 годах служил на флоте матросом и совершил на парусном судне плавания в Нидерландскую Ост-Индию и Австралию. После этого он разочаровался в избранной им было карьере морского офицера (не последнюю роль сыграла близорукость, которой он страдал) и вернулся в Берлин, где с 1852 года продолжал обучение в Королевском коммерческом институте[1][2][3].
Профессиональная карьера
В 1854 году Грасгоф окончил Берлинский Королевский коммерческий институт и остался работать в нём, преподавая математику и механику. В 1856 году группа из 23 молодых инженеров, в которую входил и Грасгоф, основали существующее и поныне Шаблон:Нп5 (Шаблон:Lang-de)[1]Шаблон:Sfn. Грасгоф стал редактором журнала «Zeitschrift des VDI», учреждённого этим обществом и издававшегося начиная с 1 января 1857 года; в нём учёный опубликовал и ряд своих статей по различным вопросам прикладной механикиШаблон:Sfn[4]. В 1860 году Ростокский университет присвоил Францу Грасгофу звание почётного доктора[2].

В 1863 году после смерти Фердинанда Редтенбахера Грасгоф стал его преемником на посту профессора кафедры прикладной механики и теории машин Политехникума Карлсруэ. Здесь он читал лекции по сопротивлению материалов, гидравлике, термодинамике и конструированию машин, причём — по общему мнению — его лекции отличались точностью и ясностью языка[2]Шаблон:Sfn.
В 1883 году Грасгоф перенёс инсульт, последствия которого существенно ограничили его творческую активность. В 1891 году последовал новый инсульт, от которого учёный так и не оправился[2].
Умер 26 октября 1893 года в Карлсруэ[1].
Научная деятельность
Работы Грасгофа по кинематике
Основное направление исследований Грасгофа — прикладная механика (в частности, кинематика механизмов). Был сторонником аналитических методов в механикеШаблон:Sfn. Из результатов, полученных Грасгофом, в современных учебниках теоретической механики обычно приводится теорема Грасгофа о проекциях скоростей (не всегда — с упоминанием имени автора).
Теорема Грасгофа о проекциях скоростей
Рассмотрим две точки — и — некоторой механической системы, и пусть и — их текущие положения. Теорема Грасгофа о проекциях скоростей в общем случае формулируется следующим образом: «Если на точки и наложена жёсткая связь, то проекции их скоростей на прямую, соединяющую текущие положения этих точек, равны»:
- .
Обычно данную теорему применяют к точкам абсолютно твёрдого тела, и в этом случае её формулируют так: «Проекции скоростей двух произвольных точек твёрдого тела на прямую, соединяющую эти точки, равны между собой»Шаблон:Sfn.
Приведём доказательство этой теоремы. Достаточно показать, что
(здесь — скорость точки относительно точки ).
Дифференцируя по времени условие жёсткой связи
(представленное в виде условия постоянства скалярного квадрата радиус-вектора точки относительно точки ), получаем:
- .
Итак, , то есть .
Пусть теперь — единичный вектор оси . Имеем:
- .
Теорема доказана.

Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения
Теорема Грасгофа о проекциях скоростей нередко оказывается полезной при решении конкретных задач кинематики абсолютно твёрдого тела. Вот — типичный пример.
Пусть и — точки абсолютно твёрдого тела, и — углы векторов и с прямой . Найти , если известны , , (жирный шрифт при наборе не использовался, так что речь идёт о нахождении модуля вектора скорости точки ).
Имеем:
- ,
то есть
- ;
отсюда
- .
Решение задачи найдено. Подчеркнём ещё раз, что мы нашли только модуль вектора . Полностью найти вектор , пользуясь только теоремой Грасгофа, мы бы не смогли.
Так обстоят дела и в общем случае. Теорема Грасгофа о проекциях скоростей сама по себе не позволяет решать задачи кинематики до конца: всегда требуется какая-либо дополнительная информация.
Работы Грасгофа по сопротивлению материалов
Грасгоф проявлял большой интерес к сопротивлению материалов и в 1866 году выпустил руководство по данному предмету, переизданное в расширенном виде в 1878 году под названием «Теория упругости и прочности» (Шаблон:Lang-de). Книга стала первой попыткой ввести элементы теории упругости в ориентированный на инженеров курс сопротивления материалов. Причём Грасгоф не ограничивается изложением лишь элементарного сопротивления материалов, но также вводит основные уравнения теории упругости, которыми пользуется при изложении теории изгиба и кручения призматических стержней и теории пластин. В задаче об изгибе стержня Грасгоф находит решения для некоторых форм поперечного сечения, не рассматривавшихся Сен-Венаном. Он продолжает исследования Вейсбаха по изучению сложного напряжённого состояния. В ряде разделов курса Грасгоф находит новые, оригинальные результатыШаблон:Sfn.
Работы Грасгофа по машиноведению
Грасгоф работал также в области машиноведения. Его главный труд — «Теоретическое машиностроение» (тт. 1—3, 1875—1890 гг.), в котором он развил учение Ф. Рёло о кинематических парах и кинематических цепяхШаблон:Sfn.
В данном труде Грасгоф рассматривалШаблон:Sfn движение как плоских, так и пространственных механизмов. Анализируя общий случай движения в пространстве, он указывал, что простая замкнутая цепь принуждённого движения с вращательными кинематическими парами должна состоять из семи звеньев, а также обсуждал возможности уменьшения числа звеньев при частных расположениях осей шарниров[5].
В учебниках по теории механизмов и машин часто приводится теорема Грасгофа о шарнирном четырёхзвеннике.
Теорема Грасгофа о шарнирном четырёхзвеннике
Данная теорема (иногда именуемая такжеШаблон:Sfn правилом Грасгофа) устанавливает условие существования кривошипа в шарнирном четырёхзвеннике. Речь идётШаблон:Sfn о плоском механизме из трёх подвижных звеньев (то естьШаблон:Sfn твёрдых тел, образующих механизм) 1, 2, 3 и стойки (неподвижного звена) 0, у которого все звенья соединены между собой вращательными кинематическими парами.

Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения Шаблон:Метка изображения
Для звеньев плоских механизмов в теории механизмов и машин используютШаблон:Sfn следующую терминологию:
- кривошип — звено плоского механизма, которое образует вращательную пару со стойкой и может совершать вокруг оси пары полный оборот;
- коромысло — звено плоского механизма, которое образует вращательную пару со стойкой, но не может совершать полный оборот вокруг оси пары;
- шатун — звено плоского механизма, связанное вращательными парами с подвижными его звеньями, но не со стойкой.
Теорема Грасгофа о шарнирном четырёхзвеннике формулируется так: "Наименьшее звено является кривошипом, если сумма длин наименьшего и любого другого звена меньше суммы длин остальных двух звеньевШаблон:Sfn (под «наименьшим» понимается звено минимальной длины).
Поясним данную формулировку. Пусть — длина самого короткого звена (для механизма, изображённого на рисунке, ), — длина одного из соединённых с ним звеньев, и — длины остальных звеньев механизма.
Предположим сначала, что и (на рисунке, где , , , это именно так). Элементарный геометрический анализ показываетШаблон:Sfn, что условием полной проворачиваемости звена наименьшей длины относительно звена длины является выполнение неравенства
- .
Если же или , то данное неравенство тем более будет выполняться. Из этих рассмотрений и следуетШаблон:Sfn справедливость теоремы Грасгофа в приведённой выше формулировке (рассмотрение предельного случая, когда неравенство обращается в равенство, мы опускаем).
Применяя правило Грасгофа, удаётся подразделитьШаблон:Sfn все шарнирные четырёхзвенники на 3 группы:
- механизм будет кривошипно-коромысловым, если длины его звеньев удовлетворяют правилу Грасгофа и за стойку принято звено, соседнее с наименьшим;
- механизм будет двухкривошипным, если сумма длин самого короткого и самого длинного звеньев меньше суммы длин остальных звеньев, и за стойку принято самое короткое звено;
- механизм будет двухкоромысловым, если либо правило Грасгофа не выполнено, либо оно выполнено, но самое короткое звено не соединено со стойкой (то есть оно является шатуном и потому не может быть кривошипом).
Так, изображённый на рисунке шарнирный четырёхзвенник является двухкоромысловым механизмом, поскольку правило Грасгофа для него не выполняется.
Работы Грасгофа по теории теплопередачи
Грасгоф работал также в области гидравлики и теплотехники, где изучал, в частности, процессы конвекции. В теории теплопередачи известно названное в его честь число Грасгофа — критерий подобия, определяющий процесс теплообмена при свободном движении в поле гравитации и являющийся мерой соотношения архимедовой (подъёмной) силы, вызванной неравномерным распределением плотности в неоднородном поле температур, и сил межмолекулярного тренияШаблон:Sfn.
Семья
В 1854 году Франц Грасгоф женился на Генриетте Ноттебом (Шаблон:Lang-de), дочери землевладельца. У них родились сын и две дочери; одна из дочерей, Елизавета, позднее вышла замуж за известного архитектора и скульптора Шаблон:Нп5 (Шаблон:Lang-de)[1].
Память

В 1894 году Шаблон:Нп5 учредило в честь Франца Грасгофа (в 1856—1890 годах — первый директор общества) свою высшую награду — памятную медаль Грасгофа, которая вручается в качестве премии для инженеров, имеющих выдающиеся научные или профессиональные заслуги в области техники[3].
В 1986 году в Карлсруэ был воздвигнут памятник Францу Грасгофу[6]. В честь него названы улицы в Бремене[7], Дюссельдорфе[8], Карлсруэ[9] и Мангейме[10].
Публикации
Примечания
Шаблон:Примечания Шаблон:Внешние ссылки
Литература
- ↑ 1,0 1,1 1,2 1,3 1,4 Шаблон:Книга — S. 746—747.
- ↑ 2,0 2,1 2,2 2,3 Hartenberg R. S. Шаблон:Cite web
- ↑ 3,0 3,1 Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Книга — С. 4.
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web