Гипотеза об одиноком бегуне

Материал из testwiki
Версия от 19:07, 25 ноября 2023; 109.252.71.116 (обсуждение)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску
Animation illustrating the case of 6 runners
Пример гипотезы об одиноком бегуне с 6 бегущими

В теории игр, особенно при изучении диофантовых приближений, гипотеза об одиноком бегуне — это гипотеза, выдвинутая Уиллсом (J. M. Wills) в 1967. Приложения гипотезы широко представлены в математике, они включают задачи ограничения обзора[1] и вычисления хроматического числа дистанционных и циркулянтных графов[2]. Гипотеза получила образное имя благодаря Годдину (L. Goddyn) в 1998[3].

Гипотеза

Пусть k бегунов бегут по круговой дорожке единичной длины. В момент t = 0 все бегуны находились в одной точке и начали забег. Скорость бегунов попарно различна. Говорят, что бегун A одинок в момент t, если он находится на расстоянии по меньшей мере 1/k от всех остальных бегунов. Гипотеза утверждает, что каждый игрок будет одиноким в некоторый момент времени.Шаблон:Sfn

Обычная формулировка задачи предполагает, что бегуны имеют скорости, выражаемые целыми числами, не делящимися на одно и то же простое число. Игрок, который должен быть одиноким, имеет нулевую скорость. Гипотеза утверждает, что если D – произвольный набор целых положительных чисел, который содержит ровно k1 число, с наибольшим общим делителем равным 1, тогда

tdD||td||1k,

где ||x|| означает расстояние от числа x до ближайшего целого.

Известные результаты

Шаблон:Unsolved

k год доказательства кем доказано замечания
1 - - тривиально: t = 0; для любого t
2 - - тривиально: t = 1 / (2 * (v1-v0))
3 - - Любое доказательство для k>3 также доказывает k=3
4 1972 Бетке и Виллс;[4] Кузик[5] -
5 1984 Кузик и Померанц;[6] Бьенья и др.[3] -
6 2001 Бохман, Хольцман, Кляйтман;[7] Рено[8] -
7 2008 Барайас и Серра[2] -

В 2011 году было доказано, что для достаточно большого количества бегунов с скоростями v1<v2<...<vk, если vi+1vi1+33log(k)k, то гипотеза выполнена[9].

Замечания

Шаблон:Примечания

Внешние ссылки

Литература

Шаблон:Rq