Теорема Титчмарша — Пойи
Теорема Титчмарша — Пойи — утверждение теории вероятностей, определяющее достаточные условия для того, чтобы некоторая функция была характеристической функцией случайной величины. Её многомерное обобщение для характеристической функции случайного вектора неизвестно[1].
Формулировка
Всякая чётная функция , непрерывная в нуле, ограниченная, неотрицательная и выпуклая вниз при , является характеристической функцией (закона распределения, называемого «выпуклым»).Шаблон:SfnШаблон:Sfn
Доказательство
Доказательство теоремы приведено в книгахШаблон:SfnШаблон:Sfn.
Примечания
Литература
- ↑ М. И. Ядренко, Н. Н. Леоненко О некоторых нерешённых задачах анализа, комбинаторики и теории вероятностей // Математика сегодня. - Киев, Вища школа, 1983. - с. 103