N-эллипс

N-эллипс — обобщение эллипса, имеющее более двух фокусов.[1] N-эллипсы называют также мультифокальными эллипсами,[2] полиэллипсами[3], k-эллипсами,[4] эллипсами Чирнхауса. Впервые такие фигуры исследовал Джеймс Максвелл в 1846 году.[5]
Пусть на плоскости задано n точек (ui, vi) (фокусы), тогда n-эллипс является геометрическим местом точек плоскости, для которых сумма расстояний до n фокусов является постоянной величиной d. В виде формулы данное утверждение записывается как
1-эллипс представляет собой окружность, 2-эллипс — обычный эллипс. Обе данные кривые являются алгебраическими кривыми степени 2.
Для любого числа n фокусов n-эллипс представляет собой замкнутую выпуклую кривую.[2]Шаблон:Rp Кривая является гладкой вне окрестностей фокуса.[4]Шаблон:Rp
n-эллипс является подмножеством точек, удовлетворяющих определённому алгебраическому уравнению.[4]Шаблон:Rp Если n нечётно, алгебраическая степень кривой равна , если n чётно, степень равна .[4]Шаблон:Rp
Примечания
Литература
- P.L. Rosin: "On the Construction of Ovals"
- B. Sturmfels: "The Geometry of Semidefinite Programming", pp. 9–16.
- ↑ J. Sekino (1999): "n-Ellipses and the Minimum Distance Sum Problem", American Mathematical Monthly 106 #3 (March 1999), 193–202. Шаблон:MR; Шаблон:Zbl.
- ↑ 2,0 2,1 Шаблон:Статья
- ↑ Z.A. Melzak and J.S. Forsyth (1977): "Polyconics 1. polyellipses and optimization", Q. of Appl. Math., pages 239–255, 1977.
- ↑ 4,0 4,1 4,2 4,3 J. Nie, P.A. Parrilo, B. Sturmfels: "J. Nie, P. Parrilo, B.St.: "Semidefinite representation of the k-ellipse", in Algorithms in Algebraic Geometry, I.M.A. Volumes in Mathematics and its Applications, 146, Springer, New York, 2008, pp. 117-132 Шаблон:Wayback
- ↑ James Clerk Maxwell (1846): "Paper on the Description of Oval Curves Шаблон:Wayback, Feb 1846, from The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862