Байесовская вероятность

Материал из testwiki
Версия от 19:22, 24 августа 2024; imported>MBH (Вероятности вероятностей)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Шаблон:Универсальная карточка

Байесовская вероятность — интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.

История

Байесовская теория и байесовская вероятность названы в честь Томаса Байеса (1702—1761), доказавшего частный случай теоремы, сейчас называемой теоремой Байеса. Термин «байесовский» стал использоваться примерно в 1950 году, и большая часть того, что сейчас называется «байесовским», не имеет к Байесу прямого отношения. Лаплас доказал более общий случай теоремы Байеса и использовал её для решения задач небесной механики и медицинской статистики. Лаплас, однако, не считал эту теорему важной для развития теории вероятностей. Он придерживался классического определения вероятности.

Франк Рамсей в работе Шаблон:Lang-en2 (1931) первым выдвинул идею об использовании субъективной уверенности для определения вероятности. Рамсей предложил это определение как дополнение к частотному определению, которое было более развито в то время. Статистик Бруно де Финетти в 1937 году применил идеи Рамсея как альтернативу частотному определению. Леонард Сэвидж расширил эту идею в работе Шаблон:Lang-en2 (1954).

Были попытки формального определения интуитивного понятия «степени уверенности». Наиболее общее определение основано на пари: степень уверенности отражается величиной ставки, которую человек готов поставить на то, что суждение истинно.

Варианты

Различные варианты байесовской интерпретации вероятности: субъективная вероятность и логическая вероятность.

Соотношение с частотной вероятностью

Байесовская вероятность противопоставляется частотной, в которой вероятность определяется относительной частотой появления случайного события при достаточно длительных наблюдениях.

Математическая статистика, основанная на частотной вероятности, была разработана Р. А. Фишером, Э. Пирсоном и Е. Нейманом в первой половине XX века. А. Колмогоров также использовал частотную интерпретацию при описании своей аксиоматики, основанной на интеграле Лебега.

Разница между байесовской и частотной интерпретацией играет важную роль в практической статистике. Например, при сравнении двух гипотез на одних и тех же данных, теория проверки статистических гипотез, основанная на частотной интерпретации, позволяет отвергать или не отвергать модели-гипотезы. При этом адекватная модель может быть отвергнута из-за того, что на этих данных кажется адекватнее другая модель. Байесовские методы, напротив, в зависимости от входных данных выдают апостериорную вероятность быть адекватной для каждой из моделей-гипотез.

Применение

С 1950-х годов байесовская теория и байесовская вероятность широко применяются за счёт, например, теоремы Кокса и принципа максимальной энтропии. Для многихШаблон:Каких? задач байесовские методы дают лучший результат, нежели методы, основанные на частотной вероятности.

Байесовская теория используется как метод адаптации существующих вероятностей к вновь полученным экспериментальным данным.

Байесовская теория используется для построения интеллектуальных фильтров, используемых, например, для фильтрации спам-писем из электронной почты.

Вероятности вероятностей

Неприятная деталь, связанная с использованием байесовской вероятности, в том, что задания вероятности недостаточно для того, чтобы понять её природу. Рассмотрим следующие ситуации:

  1. У вас есть коробка с чёрными и белыми шарами и никакой информации относительно количества тех и других.
  2. У вас есть коробка с чёрными и белыми шарами. Вы вытащили наудачу n шаров, ровно половина из них оказались чёрными.
  3. У вас есть коробка с чёрными и белыми шарами и вы знаете, что ровно половина из них — чёрные.

Байесовская вероятность «вытащить следующим чёрный шар» в каждом из этих случаев равна 0,5. Кейнс назвал это проблемой «степени уверенности». Эту проблему можно решить, введя вероятность вероятности (так называемую метавероятность).

1. Предположим, у вас есть коробка с чёрными и белыми шарами и никакой информации относительно того, сколько в ней шаров какого цвета.
Пусть θ=p — это утверждение о том, что вероятность вытащить следующим черный шар равна p, тогда распределение вероятности будет бета-распределением:
θ[0,1]f(θ)=B(αB=1,αW=1)=Γ(αB+αW)Γ(αB)Γ(αW)θαB1(1θ)αW1=Γ(2)Γ(1)Γ(1)θ0(1θ)0=1Предполагая, что вытягивания шаров независимы и равновероятны, распределение вероятности P(θm,n), после вытягивания m чёрных шаров и n белых шаров также будет Бета-распределением с параметрами αB=1+m, αW=1+n.
2. Предположим, что вы вытащили из коробки n шаров, половина из них оказались чёрными, а остальные — белыми. В этом случае распределение вероятности θ=p будет бета-распределением B(n2+1,n2+1). Максимальное апостериорное ожидание θ равно θMAP=n2+1n+2=0,5.
3. Вы знаете, что ровно половина шаров — чёрные, а остальные — белые. В этом случае вероятность равна 0,5 с вероятностью 1: f(θ)=δ(θ0,5).

См. также

Шаблон:Кол

Шаблон:Кол

Ссылки