Супермодулярность

Материал из testwiki
Версия от 16:17, 15 января 2021; imported>АлександрЛаптев (викификация)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Супермодулярность — обобщение свойства выпуклости функций числового аргумента на функционалы, определённые на множествах произвольной природы.

Функционал v, определённый на подмножествах множества N, называется супермодулярным, если для любых подмножеств A,BN выполнено

v(A)+v(B)v(AB)+v(AB).

Функционал называется модулярным, если данное условие выполнено как равенство. Функционал называется субмодулярным, если неравенство выполнено с обратным знаком.

Эквивалентное определение супермодулярности: для любого подмножества AN, для любых i,jN выполнено

v(A)+v(A{i,j})v(A{i})+v(A{j}).

Супермодулярность является более сильным свойством, чем супераддитивность функционала. Любой супермодулярный функционал является супераддитивным.

Синергетическая интерпретация

В терминах синергетики супераддитивность функционала указывает на наличие синергетического эффекта от объединения двух систем. При этом супермодулярность свидетельствует о том, что величина синергетического эффекта от объединения возрастает с увеличением масштаба объединяемых систем (положительный эффект масштаба). Субмодулярность говорит о возникновении негативных синергетических эффектов с ростом масштаба систем (диссинергия). Модулярность функционала соответствует отсутствию синергетических эффектов при объединении систем.

Применение

Понятие супермодулярности используется в теории кооперативных игр для доказательства существования C-ядра. Согласно теореме Шепли, супермодулярность характеристической функции кооперативной игры является достаточным условием существования непустого C-ядра.

Источники

  • Данилов В. И. Лекции по теории игр. — М.: Российская экономическая школа, 2002.