Формула Карно

Фо́рмула Карно́ — теорема геометрии треугольника, которая связывает сумму расстояний от центра описанной окружности труегольника до 3 его сторон и радиусы его вписанной и описанной окружностей. Названа в честь Лазара Карно (1753—1823).
Формулировка
Пусть D — центр описанной окружности треугольника ABC.
Тогда сумма расстояний от D до сторон треугольника ABC, взятых со знаком минус, когда высота из D на сторону целиком лежит вне треугольника, будет равна , где r — радиус вписанной окружности, а R — описанной.
В частности
при правильном выборе знаков[1]Шаблон:Rp.
Другие формулировки
Формула Карно[2]:
где — расстояния от центра описанной окружности соответственно до сторон треугольника (они берутся со знаком в зависимости от того на какой стороне находится центр), а — расстояния от ортоцентра соответственно до вершин треугольника.
Расстояние от центра описанной окружности например до стороны треугольника равно:
расстояние от ортоцентра например до вершины треугольника равно:
Если известны стороны треугольника , то формула Карно принимает вид:
Замечания
- В доказательстве теоремы используется теорема Птолемея.
- Формулу Карно часто называют теоремой КарноШаблон:Sfn.
Следствия
- Японская теорема о вписанном многоугольнике:Шаблон:Sfn Если вписанный -угольник разрезать на треугольникa непересекающимися диагоналями, то сумма радиусов их вписанных окружностей не зависит от способа разрезания.
- Более того, выпуклый -угольник является вписанным, если это условие соблюдается.
|
Суммы радиусов зелёных и красных окружностей равны.
| ||