Метод наименьших модулей

Материал из testwiki
Версия от 01:49, 14 сентября 2024; imported>РобоСтася (checkwiki fixes (1, 2, 9, 17, 22, 26, 38, 48, 50, 52, 54, 64, 65, 66, 76, 81, 86, 88, 89, 101))
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Метод наименьших модулей (МНМ) — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. МНМ применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений.

МНМ похож на метод наименьших квадратов. Отличие состоит в минимизации не суммы квадратов невязок, а (взвешенной) суммы их абсолютных значений (Расстояние городских кварталов).

  • d[𝐘,𝐟(𝐗)]=𝐘𝐟(𝐗)=i=1n|yif(xi)|

Этот метод обеспечивает максимум функции правдоподобия, если ошибки измерений подчиняются закону Лапласа. (Для сравнения, метод наименьших квадратов обеспечивает максимум функции правдоподобия, когда ошибки распределены по Гауссу.)

Литература

  • В. И. Мудров, В. Л. Кушко, Метод наименьших модулей, М.: Знание, 1971

См. также