Файл:Epicyclic Gearing Stationary Sun.gif

Материал из testwiki
Перейти к навигации Перейти к поиску
Epicyclic_Gearing_Stationary_Sun.gif (500 × 500 пкс, размер файла: 2,66 МБ, MIME-тип: image/gif, закольцованный, 170 фреймов, 6,8 с)
Примечание: По техническим причинам миниатюры подобных GIF-изображений высокого разрешения не анимируются.

Этот файл находится на Викискладе и может использоваться другими проектами. Информация с его страницы описания приведена ниже.

Существует векторная версия этого изображения. Её следует использовать, если качество её не хуже, чем эта растровая версия.

File:Epicyclic Gearing Stationary Sun.gif → File:Epicyclic Gearing Stationary Sun.svg

Подробнее о векторной графике в статье «Перевод изображений в формат SVG».
Также доступна информация о поддержке формата SVG в MediaWiki.

На других языках
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  မြန်မာဘာသာ  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  +/−
Новое изображение

Краткое описание

Описание
Deutsch: Umlaufrädergetriebe; Zähne: zSonne=24, zPlaneten=16, zHohl=56.
  • Antrieb=Hohlrad; Abtreib=Steg:
  • Antrieb=Steg; Abtreib=Hohlrad:
English: Epicyclic gearing; Teeth: zsun=24, zplanet=16, zring=56.
Дата
Источник Собственная работа
Автор Jahobr
Другие версии
GIF‑разработка
InfoField
 Это diagram было создано с помощью MATLAB участником Jahobr
Исходный код
InfoField

MATLAB code

function Epicyclic_Gearing()
% Source code for drawing epicyclic gearing.
% The shape of the gears is not precise, it creates a decent GIF and a SVG.
%
% 2017-01-22 Jahobr

teethSun  = 24; % if divisible by 4 plotting is easier
teethPlan = 16; % if divisible by 4 plotting is easier
teethRing = teethSun+teethPlan*2;

modul = 16;

carrierCol = round([0.1  0.7  0.1].*255)./255; % green
sunCol     = round([0.95 0.65 0  ].*255)./255; % yellow (obviously)
palnetCol  = round([0.2  0.2  1  ].*255)./255; % blue   (obviously)
ringCol    = round([1    0.2  0.2].*255)./255; % red

diameterSun  = modul.*teethSun;
diameterPlan = modul.*teethPlan;
diameterCarr = diameterSun+diameterPlan;
diameterRing = diameterSun+diameterPlan+diameterPlan;

nPlan = 4; % number of planets

xySize = 500; % size in pixel
scaleReduction = 2; % the size reduction: adds antialiasing

[pathstr,fname] = fileparts(which(mfilename)); % save files under the same name and at file location

figHandle = figure(15674455); clf
set(figHandle,'Units','pixel');
set(figHandle,'ToolBar','none');
set(figHandle,'GraphicsSmoothing','on') % requires at least version 2014b
set(figHandle,'position',[1 1 [xySize xySize]*scaleReduction]); % big start image for antialiasing later [x y width height]
axesHandle = axes;
hold(axesHandle,'on')
set(axesHandle,'position',[-0.05 -0.05 1.1 1.1]); % stretch axis bigger as figure, easy way to get rid of ticks [x y width height]
xlim([-diameterRing*0.72 diameterRing*0.72]);
ylim([-diameterRing*0.72 diameterRing*0.72]);
axis equal; drawnow;

for currentCase = 1:4;
    switch currentCase
        case 1 % Stationary_Sun
            nFrames = 170;
            reducedRGBimage = uint8(ones(xySize,xySize,3,nFrames)); % allocate
            angleCarrier = -linspace(0,pi*2/nPlan,nFrames+1); % define gear position in frames
            angleCarrier = angleCarrier(1:end-1); % remove last frame, it would be double

            anglePlan = angleCarrier.*( teethSun/teethPlan+1 ); % gear ratio
            anglePlan = anglePlan + (pi/teethPlan); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleRing = angleCarrier.*  (teethSun+teethRing) / teethRing; % gear ratio
            angleRing = angleRing + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleSun = zeros(size(anglePlan));

            saveName = [fname '_Stationary_Sun'];

        case 2 % Stationary_Ring
            nFrames = 170;
            reducedRGBimage = uint8(ones(xySize,xySize,3,nFrames)); % allocate
            angleCarrier = -linspace(0,pi*2/nPlan,nFrames+1); % define gear position in frames
            angleCarrier = angleCarrier(1:end-1); % remove last frame, it would be double

            anglePlan = angleCarrier.*( teethSun/teethPlan+1 ); % gear ratio
            anglePlan = -anglePlan + (pi/teethPlan); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleSun = angleCarrier.*  (1+teethRing/teethSun); % gear ratio
            angleSun = angleSun + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleRing = zeros(size(anglePlan));

            saveName = [fname '_Stationary_Ring'];

        case 3 % Stationary_Carrier
            nFrames = 20;
            reducedRGBimage = uint8(ones(xySize,xySize,3,nFrames)); % allocate
            angleSun = -linspace(0,pi*2/teethSun,nFrames+1); % define gear position in frames

            angleRing = -angleSun.*  (teethSun/teethRing); % gear ratio
            angleRing =  angleRing + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            anglePlan =  angleSun.* (teethSun/teethPlan ); % gear ratio
            anglePlan = -anglePlan + (pi/teethPlan); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleCarrier = zeros(size(anglePlan));

            saveName = [fname '_Stationary_Carrier'];

        case 4 % Direct_Drive
            nFrames = 170;
            reducedRGBimage = uint8(ones(xySize,xySize,3,nFrames)); % allocate
            angleAll = -linspace(0,pi*2/nPlan,nFrames+1); % define gear position in frames
            angleAll = angleAll(1:end-1); % remove last frame, it would be double
            
            angleCarrier = angleAll;
            angleCarrier = angleCarrier + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            anglePlan = angleAll;
            anglePlan = anglePlan + (pi/teethPlan); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleRing = angleAll;
            angleRing = angleRing + 0; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

            angleSun = angleAll;

            saveName = [fname '_Direct_Drive'];
    end

    for iFrame = 1:nFrames

        cla(axesHandle) % fresh frame

        %% ring
        drawRingGear(axesHandle,teethRing,modul,ringCol,angleRing(iFrame))

        %% sun
        drawCogWheel(axesHandle,[0 0],teethSun ,modul,sunCol,angleSun(iFrame));

        %% planets
        angPlan = linspace(0,2*pi,nPlan+1);
        angPlan = angPlan(1:end-1);
        for iPlan = angPlan
            [X,Y] = pol2cart(iPlan+angleCarrier(iFrame) ,diameterCarr/2);
            drawCogWheel(axesHandle,[X,Y],teethPlan,modul,palnetCol,anglePlan(iFrame)); % planetary gear
        end

        %% carrier
        angCarr= linspace(0,2*pi,nPlan*2+1);
        [X,Y] = pol2cart([angCarr  fliplr(angCarr)]+angleCarrier(iFrame) ,[ones(size(angCarr))*diameterCarr/2.05 ones(size(angCarr))* diameterCarr/1.75]);
        patch(X,Y,carrierCol,'EdgeColor',[0 0 0],'LineWidth',1.5) % full outer disc

        for iPlan = angPlan
            [X,Y] = pol2cart(iPlan+angleCarrier(iFrame) ,diameterCarr/2);
            circlePatch(X,Y,diameterPlan*0.25,carrierCol,1.5);
            circlePatch(X,Y,diameterPlan*0.15,palnetCol,1.5);
        end
        
        %% save animation
        f = getframe(figHandle);
        reducedRGBimage(:,:,:,iFrame) = imReduceSize(f.cdata,scaleReduction); % the size reduction: adds antialiasing
        
        if iFrame == 1 % SVG
            if ~isempty(which('plot2svg'))
                plot2svg(fullfile(pathstr, [fname '_Stationary.svg']),figHandle) % by Juerg Schwizer
            else
                disp('plot2svg.m not available; see http://www.zhinst.com/blogs/schwizer/');
            end
        end
        
    end

    map = createImMap(reducedRGBimage,16,[0 0 0;1 1 1;carrierCol;sunCol;palnetCol;ringCol]); % colormap
    
    im = uint8(ones(xySize,xySize,1,nFrames)); % allocate
    for iFrame = 1:nFrames
        im(:,:,1,iFrame) = rgb2ind(reducedRGBimage(:,:,:,iFrame),map,'nodither');
    end
    
    imwrite(im,map,fullfile(pathstr, [saveName '.gif']),'DelayTime',1/25,'LoopCount',inf) % save gif
    disp([saveName '.gif  has ' num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 50 MP limit
end


function drawCogWheel(axesHandle,center,toothNumber,modul,colFilling,startOffset)
% DRAWTOOTHEDWHEEL - draw a simple Toothed Wheel
%
%  Input:
%    axesHandle:
%    center:       [x y]
%    toothNumber:  scalar
%    modul:        scalar tooth "size"
%    colFilling:   color of filling [r g b]
%    startOffset:  start rotation (scalar)[rad]

effectiveRadius = modul*toothNumber/2; % effective effectiveRadius

outsideRadius =     effectiveRadius+1*  modul; %                +---+             +---+
upperRisingRadius = effectiveRadius+0.5*modul; %               /     \           /     \
% effective Radius                             %              /       \         /       \
lowerRisingRadius = effectiveRadius-0.5*modul; %             I         I       I         I
rootRadius =        effectiveRadius-1.1*modul; %     + - - - +         + - - - +         +

angleBetweenTeeth = 2*pi/toothNumber; % angle between 2 teeth
angleOffPoints = (0:angleBetweenTeeth/16:(2*pi));
angleOffPoints = angleOffPoints+startOffset; % apply rotation offset

angleOffPoints( 7:16:end) = angleOffPoints( 7:16:end) + 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints(11:16:end) = angleOffPoints(11:16:end) - 1/toothNumber^1.2; % hack to create smaller tooth tip

angleOffPoints( 8:16:end) = (angleOffPoints( 7:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints(10:16:end) = (angleOffPoints(11:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly

angleOffPoints( 6:16:end) = angleOffPoints( 6:16:end) + 1/toothNumber^1.7; % hack to create slender tooth
angleOffPoints(12:16:end) = angleOffPoints(12:16:end) - 1/toothNumber^1.7; % hack to create slender tooth

radiusOffPoints = angleOffPoints; % allocate with correct site

radiusOffPoints(1:16:end)  = rootRadius;        % center bottom         I
radiusOffPoints(2:16:end)  = rootRadius;        % left bottom           I
radiusOffPoints(3:16:end)  = rootRadius;        % left bottom corner    +
radiusOffPoints(4:16:end)  = lowerRisingRadius; % lower rising bottom      \
radiusOffPoints(5:16:end)  = effectiveRadius;   % rising edge                 \
radiusOffPoints(6:16:end)  = upperRisingRadius; % upper rising edge              \
radiusOffPoints(7:16:end)  = outsideRadius;     % right top corner                 +
radiusOffPoints(8:16:end)  = outsideRadius;     % right top                        I
radiusOffPoints(9:16:end)  = outsideRadius;     % center top                       I
radiusOffPoints(10:16:end) = outsideRadius;     % left top                         I
radiusOffPoints(11:16:end) = outsideRadius;     % left top corner                  +
radiusOffPoints(12:16:end) = upperRisingRadius; % upper falling edge             /
radiusOffPoints(13:16:end) = effectiveRadius;   % falling edge                /
radiusOffPoints(14:16:end) = lowerRisingRadius; % lower falling edge       /
radiusOffPoints(15:16:end) = rootRadius;        % right bottom corner   +
radiusOffPoints(16:16:end) = rootRadius;        % right bottom          I

[X,Y] = pol2cart(angleOffPoints,radiusOffPoints);
X = X+center(1); % center offset
Y = Y+center(2); % center offset
patch(X,Y,colFilling,'EdgeColor',[0 0 0],'LineWidth',1.5)
% plot(axesHandle,X,Y,'-x','linewidth',2,'color',[0 0 0]);

% %% effective Radius
% [X,Y] = pol2cart(angleOffPoints,effectiveRadius);
% X = X+center(1); % center offset
% Y = Y+center(2); % center offset
% plot(axesHandle,X,Y,'-.','color',[0 0 0]);


function drawRingGear(axesHandle,toothNumber,modul,colFilling,startOffset)
% subfunction for the outer static gear
effectiveRadius = modul*toothNumber/2; % effective effectiveRadius

outsideRadius =     effectiveRadius-1*  modul; %                +---+             +---+
upperRisingRadius = effectiveRadius-0.5*modul; %               /     \           /     \
% effective Radius                             %              /       \         /       \
lowerRisingRadius = effectiveRadius+0.5*modul; %             I         I       I         I
rootRadius =        effectiveRadius+1.1*modul; %     + - - - +         + - - - +         +

angleBetweenTeeth = 2*pi/toothNumber; % angle between 2 teeth
angleOffPoints = (0:angleBetweenTeeth/16:(2*pi));
angleOffPoints = angleOffPoints+startOffset; % apply rotation offset

%% outerEdge
maxRadius = rootRadius*1.2; % definition of outer line
[X,Y] = pol2cart(angleOffPoints,maxRadius);

patch(X,Y,colFilling,'EdgeColor',[0 0 0],'LineWidth',1.5) % full outer disc
% plot(axesHandle,X,Y,'linewidth',2,'color',[0 0 0]); % draw outer circle

%% inner teeth
radiusOffPoints = angleOffPoints; % init

angleOffPoints(7:16:end) =  angleOffPoints(7:16:end)  + 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints(11:16:end) = angleOffPoints(11:16:end) - 1/toothNumber^1.2; % hack to create smaller tooth tip

angleOffPoints(8:16:end)  = (angleOffPoints(7:16:end) +  angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints(10:16:end) = (angleOffPoints(11:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly

angleOffPoints(6:16:end) =  angleOffPoints(6:16:end)  + 1/toothNumber^1.7; % hack to create slender tooth
angleOffPoints(12:16:end) = angleOffPoints(12:16:end) - 1/toothNumber^1.7; % hack to create slender tooth

radiusOffPoints(1:16:end)  = rootRadius;        % center bottom         I
radiusOffPoints(2:16:end)  = rootRadius;        % left bottom           I
radiusOffPoints(3:16:end)  = rootRadius;        % left bottom corner    +
radiusOffPoints(4:16:end)  = lowerRisingRadius; % lower rising bottom      \
radiusOffPoints(5:16:end)  = effectiveRadius;   % rising edge                 \
radiusOffPoints(6:16:end)  = upperRisingRadius; % upper rising edge              \
radiusOffPoints(7:16:end)  = outsideRadius;     % right top corner                 +
radiusOffPoints(8:16:end)  = outsideRadius;     % right top                        I
radiusOffPoints(9:16:end)  = outsideRadius;     % center top                       I
radiusOffPoints(10:16:end) = outsideRadius;     % left top                         I
radiusOffPoints(11:16:end) = outsideRadius;     % left top corner                  +
radiusOffPoints(12:16:end) = upperRisingRadius; % upper falling edge             /
radiusOffPoints(13:16:end) = effectiveRadius;   % falling edge                /
radiusOffPoints(14:16:end) = lowerRisingRadius; % lower falling edge       /
radiusOffPoints(15:16:end) = rootRadius;        % right bottom corner   +
radiusOffPoints(16:16:end) = rootRadius;        % right bottom          I

[X,Y] = pol2cart(angleOffPoints,radiusOffPoints);

patch(X,Y,[1 1 1],'EdgeColor',[0 0 0],'LineWidth',1.5) % overlay white area for inner teeth
% plot(axesHandle,X,Y,'-','linewidth',2,'color',[0 0 0]); % teeth line


function circlePatch(x,y,r,col,linW)
% x coordinates of the center
% y coordinates of the center
% r is the radius of the circle
% col patch color
% linW LineWidth
angleOffPoints = linspace(0,2.001*pi,200);
xc = x + r*cos(angleOffPoints);
yc = y + r*sin(angleOffPoints);
patch(xc,yc,col,'EdgeColor',[0 0 0],'LineWidth',linW);


function im = imReduceSize(im,redSize)
% Input:
%  im:      image, [imRows x imColumns x nChannel x nStack] (unit8)
%                      imRows, imColumns: must be divisible by redSize
%                      nChannel: usually 3 (RGB) or 1 (grey)
%                      nStack:   number of stacked images
%                                usually 1; >1 for animations
%  redSize: 2 = half the size (quarter of pixels)
%           3 = third the size (ninth of pixels)
%           ... and so on
% Output:
%  imNew:  unit8([imRows/redSize x imColumns/redSize x nChannel x nStack])
%
% an alternative is : imNew = imresize(im,1/reduceImage,'bilinear');
%        BUT 'bicubic' & 'bilinear'  produces fuzzy lines
%        IMHO this function produces nicer results as "imresize"
 
[nRow,nCol,nChannel,nStack] = size(im);

if redSize==1;  return;  end % nothing to do
if redSize~=round(abs(redSize));             error('"redSize" must be a positive integer');  end
if rem(nRow,redSize)~=0;     error('number of pixel-rows must be a multiple of "redSize"');  end
if rem(nCol,redSize)~=0;  error('number of pixel-columns must be a multiple of "redSize"');  end

nRowNew = nRow/redSize;
nColNew = nCol/redSize;

im = double(im).^2; % brightness rescaling from "linear to the human eye" to the "physics domain"; see youtube: /watch?v=LKnqECcg6Gw
im = reshape(im, nRow, redSize, nColNew*nChannel*nStack); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nRow, 1, nColNew*nChannel]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image. Size of result: [nColNew*nChannel, nRow, 1]
im = reshape(im, nColNew*nChannel*nStack, redSize, nRowNew); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nColNew*nChannel, 1, nRowNew]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image back. Size of result: [nRowNew, nColNew*nChannel, 1]
im = reshape(im, nRowNew, nColNew, nChannel, nStack); % putting all channels (rgb) back behind each other in the third dimension
im = uint8(sqrt(im./redSize^2)); % mean; re-normalize brightness: "scale linear to the human eye"; back in uint8


function map = createImMap(imRGB,nCol,startMap)
% createImMap creates a color-map including predefined colors.
% "rgb2ind" creates a map but there is no option to predefine some colors,
%         and it does not handle stacked images.
% Input:
%   imRGB:     image, [imRows x imColumns x 3(RGB) x nStack] (unit8)
%   nCol:      total number of colors the map should have, [integer]
%   startMap:  predefined colors; colormap format, [p x 3] (double)

imRGB = permute(imRGB,[1 2 4 3]); % step1; make unified column-image (handling possible nStack)
imRGBcolumn = reshape(imRGB,[],1,3,1); % step2; make unified column-image

fullMap = double(permute(imRGBcolumn,[1 3 2]))./255; % "column image" to color map 
[fullMap,~,imMapColumn] = unique(fullMap,'rows'); % find all unique colores; create indexed colormap-image
% "cmunique" could be used but is buggy and inconvenient because the output changes between "uint8" and "double"

nColFul = size(fullMap,1);
nColStart = size(startMap,1);
disp(['Number of colors: ' num2str(nColFul) ' (including ' num2str(nColStart) ' self defined)']);

if nCol<=nColStart;  error('Not enough colors');        end
if nCol>nColFul;   warning('More colors than needed');  end

isPreDefCol = false(size(imMapColumn)); % init
 
for iCol = 1:nColStart
    diff = sum(abs(fullMap-repmat(startMap(iCol,:),nColFul,1)),2); % difference between a predefined and all colores
    [mDiff,index] = min(diff); % find matching (or most similar) color
    if mDiff>0.05 % color handling is not precise
        warning(['Predefined color ' num2str(iCol) ' does not appear in image'])
        continue
    end
    isThisPreDefCol = imMapColumn==index; % find all pixel with predefined color
    disp([num2str(sum(isThisPreDefCol(:))) ' pixel have predefined color ' num2str(iCol)]);
    isPreDefCol = or(isPreDefCol,isThisPreDefCol); % combine with overall list
end
[~,mapAdditional] = rgb2ind(imRGBcolumn(~isPreDefCol,:,:),nCol-nColStart,'nodither'); % create map of remaining colors
map = [startMap;mapAdditional];

Лицензирование

Я, владелец авторских прав на это произведение, добровольно публикую его на условиях следующей лицензии:
Creative Commons CC-Zero Этот файл доступен на условиях Creative Commons CC0 1.0 Универсальной передачи в общественное достояние (Universal Public Domain Dedication).
Лица, связанные с работой над этим произведением, решили передать данное произведение в общественное достояние, отказавшись от всех прав на произведение по всему миру в рамках закона об авторских правах (а также связанных и смежных прав), в той степени, которую допускает закон. Вы можете копировать, изменять, распространять и исполнять данное произведение в любых целях, в том числе в коммерческих, без получения на это разрешения автора.

Краткие подписи

Добавьте однострочное описание того, что собой представляет этот файл

Элементы, изображённые на этом файле

изображённый объект

image/gif

История файла

Нажмите на дату/время, чтобы увидеть версию файла от того времени.

Дата/времяМиниатюраРазмерыУчастникПримечание
текущий23:34, 29 октября 2017Миниатюра для версии от 23:34, 29 октября 2017500 × 500 (2,66 МБ)wikimediacommons>Jahobrgraph smoothing

Следующие 2 страницы используют этот файл: