Файл:KleinBottle-01.png
Этот файл находится на Викискладе и может использоваться другими проектами. Информация с его страницы описания приведена ниже.
Краткое описание
czech:Kleinova láhev je těleso,ve kterém nelze přejít přes okraj. Technicky vzato má jen jednu stranu. V knize Hravá matematika od Radka Chajdy jsem našel otázku: lze do Kleinovy láhve něco nalít? Ano lze do ní něco nalít a ještě není potřeba víčko.
Lukáš HOZDA 1.11.2009
|
See also
Лицензирование
| Public domainPublic domainfalsefalse |
| Я, владелец авторских прав на это произведение, передаю его в общественное достояние. Это разрешение действует по всему миру. В некоторых странах это не может быть возможно юридически, в таком случае: Я даю право кому угодно использовать данное произведение в любых целях без каких-либо условий, за исключением таких условий, которые требуются по закону. |
Parameterization
This immersion of the Klein bottle into R3 is given by the following parameterization. Here the parameters u and v run from 0 to 2π and r is a fixed positive constant.
For :
For :
Mathematica source
KleinBottle[r_:1] =
Function[{u, v},
UnitStep[Sin[u]]
{
6 Cos[u](1 + Sin[u]) + 4r(1 - Cos[u]/2) Cos[u]Cos[v],
16 Sin[u] + 4r(1 - Cos[u]/2) Sin[u]Cos[v],
4r(1 - Cos[u]/2) Sin[v]
}
+ (1 - UnitStep[Sin[u]])
{
6 Cos[u](1 + Sin[u]) - 4r(1 - Cos[u]/2) Cos[v],
16 Sin[u],
4r(1 - Cos[u]/2) Sin[v]
}
]
ParametricPlot3D[Evaluate[KleinBottle[][u, v]], {u, 0, 2Pi}, {v, 0, 2Pi},
PlotPoints -> {50, 19}, Boxed -> False, Axes -> False,
ViewPoint -> {0.454, -2.439, -2.301}]
Краткие подписи
Элементы, изображённые на этом файле
изображённый объект
История файла
Нажмите на дату/время, чтобы увидеть версию файла от того времени.
| Дата/время | Миниатюра | Размеры | Участник | Примечание | |
|---|---|---|---|---|---|
| текущий | 00:39, 13 декабря 2006 | 240 × 300 (64 КБ) | wikimediacommons>Mahahahaneapneap | pngcrushed |
Использование файла
Следующая страница использует этот файл:
