Полная раскраска

В теории графов полная раскраска — это противоположность гармонической раскраске в том смысле, что это раскраска вершин, в которой каждая пара цветов встречается по меньшей мере на одной паре смежных вершин. Эквивалентно, полная раскраска — это минимальная раскраска, в том смысле, что её нельзя преобразовать в правильную раскраску с меньшим числом цветов путём слияния двух цветов. Ахроматическое число ψ(G) графа G — это максимальное число цветов среди всех полных раскрасок графа G.
Теория сложности
Нахождение ψ(G) является задачей оптимизации. Проблема разрешимости для полной раскраски может быть сформулирована как:
- ДАНО: Граф и положительное целое число
- ВОПРОС: Существует ли разбиение множества вершин на или более непересекающихся множеств таких, что каждое является независимым множеством для и таких, что для каждой пары различных множеств независимым множеством не является.
Определение ахроматического числа является NP-трудной. Определение, не будет ли ахроматическое число больше заданного числа является NP-полной, как показали Янакакис и Гаврил (Yannakakis, Gavril) в 1978 году путём преобразования из задачи поиска минимального наибольшего паросочетания[1].
Заметим, что любая раскраска графа с минимальным числом цветов должна быть полной раскраской, так что минимизация числа цветов полной раскраски является просто переформулировкой стандартной задачи раскраски графа.
Алгоритм
Оптимизационная задача допускает аппроксимацию с гарантированной эффективностью [2].
Специальные случаи графов
Задача определения ахроматического числа остаётся NP-полной также для некоторых специальных классов графов: двудольные графы[3], дополнения двудольных графов (то есть, графы, не имеющие независимого множества с более чем двумя вершинами)[1], кографы, интервальные графы[4] и даже деревья[5].
Для дополнений деревьев ахроматическое число может быть вычислено за полиномиальное время[6]. Для деревьев можно задачу аппроксимировать с постоянным коэффициентом[2].
Известно, что ахроматическое число n-мерного графа гиперкуба пропорционально , но точная константа пропорциональности не известна[7].
Примечания
Ссылки
- A compendium of NP optimization problems Шаблон:Wayback
- A Bibliography of Harmonious Colourings and Achromatic Number by Keith Edwards
- ↑ 1,0 1,1 Шаблон:Книга A1.1: GT5, pg. 191.
- ↑ 2,0 2,1 Шаблон:Статья.
- ↑ Шаблон:Статья.
- ↑ Шаблон:Статья.
- ↑ Шаблон:Статья.
- ↑ Шаблон:Статья.
- ↑ Шаблон:Статья.