Теорема Дирихле о простых числах в арифметической прогрессии
Шаблон:Другие значения Теорема Дирихле о простых числах в арифметической прогрессии гласит, что каждая бесконечная арифметическая прогрессия, первый член и разность которой — натуральные взаимно простые числа, содержит бесконечное число простых чисел.
Дирихле доказал, что при любых фиксированных натуральных взаимно простых числах l и k справедливо следующее: Шаблон:Рамка Пусть — целые числа, и .
Тогда существует бесконечно много простых чисел таких, что . Шаблон:Конец рамки
История доказательств
Теорема в данной формулировке была доказана Дирихле аналитическими средствами в 1837 году. В дальнейшем были найдены доказательства теоремы элементарными методами[1]. Различные такие доказательства представили Мертенс, Сельберг и Цассенхаус.
Вариации
При рассмотрении простых довольно часто оказывается, что их множество обладает многими свойствами, присущими множеству всех простых чисел. Существует немало теорем и гипотез, рассматривающих только простые числа из определённого класса вычетов или соотношения множеств простых чисел из разных классов вычетов.
Например, кроме основного утверждения теоремы, Дирихле доказал в 1839 году, что при любых фиксированных натуральных взаимно простых числах и :
где суммирование ведётся по всем простым числам с условием , а — функция Эйлера.
Это соотношение можно интерпретировать как закон равномерного распределения простых чисел по классам вычетов , поскольку
если суммирование ведётся по всем простым числам.
Известно, что для любых взаимно простых чисел и ряд , где суммирование ведётся по простым , расходится.
См. также
- Характеры — основной математический инструмент изучения простых чисел в арифметической прогрессии