Теорема Мергеляна

Материал из testwiki
Версия от 13:46, 24 декабря 2024; imported>InternetArchiveBot (Добавление ссылок на электронные версии книг (20241223)) #IABot (v2.0.9.5) (GreenC bot)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Теорема Мергеляна — утверждение о возможности равномерного приближения многочленами функций комплексной переменной; установлено доказано советским математиком Сергеем Мергеляном в 1951 году.

Согласно теореме, всякую непрерывную функцию f:K на компакте K со связным дополнением до комплексной плоскости (то есть K — связно), голоморфную на внутренних точках K, возможно равномерно аппроксимировать многочленами.

Теорема является развитием и обобщением теорем Вейерштрасса и Рунге, и широко применяется в различных направлениях комплексного анализа; этот результат увенчал большой цикл работ по теории приближения в комплексном случае. В частности, Лаврентьев в 1936 году доказал утверждение для случая, когда K не имеет внутренних точек, а в 1945 году Келдыш установил результат для случая, когда K является замкнутой областью со связным дополнением.

Метод доказательства, применённый Мергеляном, конструктивен, и остаётся единственным известным конструктивным доказательством результата.

Литература