Спираль Ферма

Материал из testwiki
Версия от 11:19, 29 марта 2024; imported>Matsievsky (Преамбула)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску
Спираль Ферма

Спираль Ферма (иногда неправильно параболическая спираль) — спираль, задаваемая на плоскости в полярных координатах уравнением r2=a2φ. Является видом Архимедовой спирали.

Свойства

Параметрическое уравнение[1]

x=sgn(a)|a|θ(1/2)cosθy=sgn(a)|a|θ(1/2)sinθ

Построение

Математика и подсолнечник

Иллюстрация модели Фогеля для n=1..500.
Распределение семян в подсолнечнике.

Учёный Фогель в 1979 году предложил модель для распределения цветков и семян у подсолнуха. Эта модель выражается следующим образом,

r=cn,
θ=n×137.5,

где θ — угол, r — радиус или расстояние от центра, а n — номер цветка и c — константа. Это форма спирали Ферма.

Примечания

Шаблон:Примечания

См. также

Ссылки

Шаблон:Книга - статья из математической энциклопедии. Д. Д. Соколов. Шаблон:Перевести Шаблон:Внешние ссылки Шаблон:Кривые Шаблон:Math-stub