Вектор Шепли

Материал из testwiki
Перейти к навигации Перейти к поиску

Вектор Шепли — принцип оптимальности распределения выигрыша между игроками в задачах теории кооперативных игр. Представляет собой распределение, в котором выигрыш каждого игрока равен его среднему вкладу в благосостояние тотальной коалиции при определенном механизме её формирования. Назван в честь американского экономиста и математика Ллойда Шепли.[1][2]

Формальное определение

Для кооперативной игры рассмотрим некоторое упорядочение множества игроков N. Обозначим через Ki подмножество, содержащее i первых игроков в данном упорядочении. Вкладом i-го по счету игрока назовем величину v(Ki)v(Ki1), где v — характеристическая функция кооперативной игры.

Вектором Шепли кооперативной игры называется такое распределение выигрыша, в котором каждый игрок получает математическое ожидание своего вклада в соответствующие коалиции Ki, при равновероятном возникновении упорядочений:

Φ(v)=1n!τTxτ,

где n — количество игроков, T — множество упорядочений множества игроков N, xτ — распределение выигрыша, в котором игрок, стоящий на месте i в упорядочении τ, получает свой вклад в коалицию Ki (точка Вебера).

Более распространенная формула для вычисления вектора Шепли, не требующая нахождения n! точек Вебера, имеет вид:

Φ(v)i=iK(k1)!(nk)!n!(v(K)v(Ki)),

где n — количество игроков, k — количество участников коалиции K.

Аксиоматика вектора Шепли

Вектор Шепли удовлетворяет следующим свойствам:

1. Линейность. Отображение Φ(v) представляет собой линейный оператор, то есть для любых двух игр с характеристическими функциями v и w

Φ(v+w)=Φ(v)+Φ(w);

и для любой игры с характеристической функцией v и для любого α

Φ(αv)=αΦ(v).

2. Симметричность. Получаемый игроком выигрыш не зависит от его номера. Это означает, что если игра w получена из игры v перестановкой игроков, то её вектор Шепли Φ(w) есть вектор Φ(v) с соответствующим образом переставленными элементами.

3. Аксиома болвана. Болваном в теории кооперативных игр называется бесполезный игрок, не вносящий вклада ни в какую коалицию, то есть игрок i такой, что для любой коалиции K, содержащей i, выполнено: v(K)v(Ki)=0.

Аксиома болвана состоит в том, что если игрок i — болван, то Φ(v)i=0.

4. Эффективность. Вектор Шепли позволяет полностью распределить имеющееся в распоряжении тотальной коалиции благосостояние, то есть сумма компонент вектора Φ(v) равна v(N).

Теорема Шепли. Для любой кооперативной игры v существует единственное распределение выигрыша, удовлетворяющее аксиомам 1 — 4, задаваемое приведенной выше формулой.

Приложения

Одним из современных приложений вектора Шепли в машинном обучении является оценка влияния отдельных признаков примера на прогнозируемое значение при решении задачи классификации[3] или регрессии[4].

Примечания

Шаблон:Примечания

Литература

  • Васин А. А., Морозов В. В. Теория игр и модели математической экономики - М.: МГУ, 2005, 272 с.
  • Воробьев Н. Н. Теория игр для экономистов-кибернетиков — М.: Наука, 1985
  • Мазалов В. В. Математическая теория игр и приложения — Изд-во Лань, 2010, 446 с.
  • Петросян Л. А., Зенкевич Н. А., Шевкопляс Е. В. Теория игр — СПб: БХВ-Петербург, 2012, 432 с.
  • Печерский С. Л., Яновская Е. Б. Кооперативные игры: решения и аксиомы — Изд-во Европейского ун-та в С.-Петербурге, 2004, 459 с.

См. также

Шаблон:Оформить литературу Шаблон:Нет сносок

Шаблон:Теория игр