Дискретная теорема Грина

Материал из testwiki
Перейти к навигации Перейти к поиску

Дискретная версия теоремы Грина описывает отношение между двойным интегралом функции для обобщенной прямоугольной области (область, которая образуется из конечного суммирования прямоугольников на плоскости) и линейной комбинации первообразной функции, заданной в углах области. В этом значении мы будем рассматривать популярную версию дискретной теоремы Грина.[1][2]

Теорема названа в честь британского математика Джорджа Грина, из-за сходства с его теоремой, теоремой Грина: обе теоремы описывают связь между интегрированием по кривой и интегрированием по области, ограниченной кривой. Теорема была впервые представлена как непрерывное продолжение алгоритма Ванга «Интегральное представление изображений», в 2007 году на Международной конференции по компьютерному видению ICCV [1], а затем вновь была опубликована профессором Doretto и его коллегами [3] в рецензируемом журнале в 2011 году.

Формулировка

определение αD

Предположим что ƒ является интегрируемой функцией на плоскости R2, так что:

F(x,y)0y0xf(u,v)dudv

является её первообразной функцией. Пусть DR2 — обобщенная прямоугольная область. Тогда представим теорему как:

Df(x,y)dxdy=xDαD(x)F(x),

где D — множество углов данной области D , αD является дискретным параметром с возможными значениями {0, ±1, ±2}, которые определяются в зависимости от типа угла, как показано на рисунке справа. Этот параметр является частным случаем стремления кривой [4], которая последовательно определяется при помощи одностороннего разрыва [5] кривой в углах заданной области.

Эта теорема является естественным продолжением алгоритма таблицы обобщённой области. Эта теорема расширяет алгоритм в том смысле, что область может быть непрерывной и она может быть сформирована из (конечного) числа прямоугольников, тогда как в алгоритме таблицы обобщённой области предполагается, что область является единым прямоугольником.

Дискретная теорема Грина также обобщает теорему Ньютона-Лейбница.

Идея доказательства

Для доказательства теоремы можно применить формулу из алгоритма "Интегрального представление изображений", которая включает в себя прямоугольники, образующие данную область:

Это изображение показывает, как + \ — коэффициенты первоначальной функции взаимно сокращаются в прямоугольниках, кроме точек расположенных в углах данной области.

Пример

Предположим что функция ƒ, задана на плоскости R2 , тогда F является её первообразной функцией. Пусть D — это область, окрашенная зелёным на следующем рисунке:

Согласно теореме, примененимой к данной области, получается следующее выражение:

Df(x,y)dxdy=F(J)2F(K)+F(L)F(M)+F(N)F(O)+F(P)+F(Q)F(R).

Приложения

Дискретная теорема Грина используется в компьютерных приложениях по обнаружению объектов на изображениях и их быстрого вычисления, а также в интересах эффективного расчета вероятностей.

Обобщения

В 2011 году были предложены два обобщения к теореме:

  • Подход, предложенный профессором Фам и его коллегами: обобщение теоремы полигональных областей с помощью динамического программирования [6].
  • Подход, предложенный математиком Шахар: обобщение теоремы на более широкий спектр областей при помощью оператора разрыва [5] и метода интегрирования наклонной линии [7] при помощи которых и была сформулирована дискретная теорема Грина [8].

Видео лекции

См. также

Примечания

Шаблон:Примечания