Задача об упаковке в контейнеры

Материал из testwiki
Перейти к навигации Перейти к поиску

Задача об упаковке в контейнеры — NP-трудная комбинаторная задача. Задача заключается в упаковке объектов предопределённой формы в конечное число контейнеров предопределённой формы таким способом, чтобы число использованных контейнеров было наименьшим или количество или объём объектов (которые упаковывают) были наибольшими.

Разновидности и методы решения задач упаковки

Существует множество разновидностей этой задачи (двумерная упаковка, линейная упаковка, упаковка по весу, упаковка по стоимости и т. п.), которые могут применяться в разных областях, как собственно в вопросе оптимального заполнения контейнеров, загрузки грузовиков с ограничением по весу, созданием резервных копий на съёмных носителях и т. д. Так как задача является NP-трудной, то использование точного переборного алгоритма возможно только при небольших размерностях. Обычно для решения задачи используют эвристические приближённые полиномиальные алгоритмы.

Задача упаковки в одномерные одинаковые контейнеры

Постановка задачи

Пусть дано множество контейнеров размера V и множество n предметов размеров a1,,an. Надо найти целое число контейнеров B и разбиение множества {1,,n} на B подмножеств S1SB таких, что iSkaiV для всех k=1,,B. Решение называется оптимальным, если B минимально. Минимальное B далее обозначается OPT.

Задача упаковки в контейнеры может быть сформулирована как задача целочисленного программирования следующим образом:

Минимизировать B=i=1nyi
при ограничениях j=1najxijVyi, i{1,,n}
i=1nxij=1, j{1,,n}
yi{0,1}, i{1,,n}
xij{0,1}, i{1,,n}j{1,,n}

где yi=1, если контейнер i используется и xij=1, если предмет j помещён в контейнер i.[1]

Приближённые полиномиальные алгоритмы

Простейшими полиномиальными алгоритмами упаковки являются алгоритмы Best Fit Decreasing — BFD (Наилучший подходящий по убыванию) и First Fit Decreasing — FFD (Первый подходящий по убыванию). Предметы упорядочивают по убыванию размеров и последовательно пакуют либо в контейнер, в котором после упаковки останется наименьший свободный объём — BFD, либо в первый контейнер куда он помещается — FFD. Доказано, что эти алгоритмы используют не более

119OPT+1

контейнеров[2].

Однако для задачи упаковки существуют и асимптотически ε -оптимальные полиномиальные алгоритмы.

Задача определения, равно ли OPT двум или трем является NP-трудной. Поэтому для любого ε > 0, трудно упаковать предметы в (3/2 − ε)OPT контейнеров. (Если такой полиномиальный алгоритм существует, то за полиномиальное время можно определить разделятся ли n неотрицательных чисел на два множества с одинаковой суммой элементов. Однако известно, что эта проблема NP-трудна.) Следовательно, если P не совпадает с NP, то для задачи упаковки в контейнеры нет алгоритма приближенной схемы полиномиального времени (PTAS). С другой стороны, для всякого ε >0  можно найти решение с не более, чем (1 + ε)OPT + 1 контейнерами за полиномиальное время. Такие алгоритмы относятся к асимптотической PTAS.[3] Но поскольку в оценке сложности этого класса алгоритмов anb обе константы произвольно зависят от  ε, подобные алгоритмы в отличие от FFD и BFD могут быть практически бесполезными.

Вероятностный подход

Для некоторого класса вероятностных распределений размеров упаковываемых предметов, включающего функции распределения выпуклые вверх и вниз, существует практический полиномиальный алгоритм упаковки асимптотически оптимальный почти наверное при неограниченном росте числа предметов. Для распределений не входящих в этот класс могут строиться индивидуальные полиномиальные асимптотически оптимальные алгоритмы.[4]

Примечания

Шаблон:Примечания

См. также

Шаблон:Задачи упаковки Шаблон:NP-полные задачи