Инвертированный индекс

Материал из testwiki
Перейти к навигации Перейти к поиску

Инвертированный индекс (Шаблон:Lang-en) — структура данных, в которой для каждого слова коллекции документов в соответствующем списке перечислены все документы в коллекции, в которых оно встретилось. Инвертированный индекс используется для поиска по текстам.

Есть два варианта инвертированного индекса:

  • индекс, содержащий только список документов для каждого слова,
  • индекс, дополнительно включающий позицию слова в каждом документеШаблон:Sfn.

Применение

Опишем, как решается задача нахождения документов, в которых встречаются все слова из поискового запроса. При обработке однословного поискового запроса ответ уже есть в инвертированном индексе — достаточно взять список, соответствующий слову из запроса. При обработке многословного запроса берётся пересечение списков, соответствующих каждому из слов запроса.

Обычно в поисковых системах после построения с помощью инвертированного индекса списка документов, содержащих слова из запроса, идет ранжирование документов из списка. Инвертированный индекс — это самая популярная структура данных, которая используется в информационном поискеШаблон:Sfn.

Пример

Пусть у нас есть корпус из трёх текстов T0="it is what it is", T1="what is it" и T2="it is a banana", тогда инвертированный индекс будет выглядеть следующим образом:

"a":      {2}
"banana": {2}
"is":     {0, 1, 2}
"it":     {0, 1, 2}
"what":   {0, 1}

Здесь цифры обозначают номера текстов, в которых встретилось соответствующее слово. Тогда отработка поискового "what is it" запроса даст следующий результат {0,1}{0,1,2}{0,1,2}={0,1}.

Особенности применения в реальных поисковых системах

В списке вхождений слова в документы, помимо id документов, обычно также указываются факторы (TF-IDF, бинарный фактор: «попало слово в заголовок или не попало», другие факторы), которые используются при ранжировании. Индекс может строиться не по всем словоформам, а по леммам (по каноническим формам слов). Стоп-слова можно исключить и не строить для них индекс, считая, что каждое из них встречается почти во всех документах корпуса. Для ускорения вычисления пересечений используют эвристику skip-pointer-ов. При обработке запросов, содержащих много слов, используют функцию кворума, которая пропускает на следующую стадию ранжирования часть документов, в которых встретились не все слова из запроса.

См. также

Примечания

Шаблон:Примечания

Литература