Квантовая логика

Материал из testwiki
Перейти к навигации Перейти к поиску

Квантовая логика — раздел логики, необходимый для рассуждения о предложениях, которые учитывают принципы квантовой теории. Эта область исследований была основана в 1936 году работой Гарита Бирхофа и Джона фон Неймана, которые пытались примирить очевидную несогласованность классической логики с фактами по поводу измерения дополнительных переменных в квантовой механике, как например координата и импульс.[1]

Квантовая логика может быть сформулирована как измененная версия логики высказываний. Она имеет несколько свойств, которые отличают её от классической логики. В частности, отсутствие дистрибутивности:

pAND(qORr)=(pANDq)OR(pANDr),

где символы p, q и r — логические переменные.

Чтобы проиллюстрировать, почему дистрибутивный закон не работает, рассмотрим движущуюся по прямой частицу. Далее, пусть логические переменные p, q и r имеют следующие значения:

  • p= «частица двигается вправо»;
  • q= «частица слева от начала координат»;
  • r= «частица справа от начала координат».

Тогда предложение «qORr» всегда верно, точно как и

pAND(qORr)=p

С другой стороны, «pANDq» и «pANDr» неверны, так как требуют более жёстких условий одновременных значений позиции и инерции, что не возможно по принципу неопределённости Гейзенберга. Поэтому

(pANDq)OR(pANDr)=FALSE

и дистрибутивность не может существовать.

Представим лабораторию, которая имеет аппаратуру, необходимую для измерения скорости пули, выпущеной из огнестрельного оружия. Тщательно подбирая условия (температуру, влажность, давление и т. д.), необходимо неоднократно выстрелить из одного и того же оружия и провести измерения скоростей. Это даст некоторое распределение скоростей. Однако мы не будем стремиться получить тем же образом эти значения для каждого индивидуального измерения, для каждой группы измерений; мы ожидаем, что эксперимент приводит к такому же распределению скоростей. В частности, мы можем ожидать распределения вероятностей предложениям, например, { a ≤ скорость ≤ b}. Поэтому естественно предложить, что при контролируемых условиях подготовки измерение классической системы можно описать мерой вероятности на пространстве состояний. Такая же статистическая структура также присутствует в квантовой механике. Для более подробной информации о статистике квантовых систем, смотрите учебные пособия по квантовой статистической механике. Квантовая логика работает по принципу "от общего - к частному", с обратным логическим (проверяемым) путём.

Примечания

Шаблон:Примечания

Литература

Шаблон:Вс