Окружности Вилларсо

Материал из testwiki
Перейти к навигации Перейти к поиску
Окружности Вилларсо на торе.
Анимация, показывающая разрезание тора бикасательной плоскостью и две получающиеся окружности Вилларсо

Окружности Вилларсо — пара окружностей, получаемых при сечении тора вращения «диагональной» касательной плоскостью, проходящей через центр тора. В силу симметрии тора эта плоскость касается поверхности тора дважды, то есть является бикасательной.

Названы в честь французского астронома и математика Ивона Вилларсо.

Семейства параллелей, меридианов и два семейства окружностей Вилларсо вкупе составляют четыре попарно трансверсальных семейства окружностей на торе.[1]. Таким же свойством — иметь четыре попарно трансверсальных семейства окружностей — обладают циклиды Дюпена (конформные образы тора вращения).

Формулу для окружностей можно получить перемножением уравнений двух пересекающиеся окружности радиуса r и R (r<R):

(x+r)2+y2R2=0,
(xr)2+y2R2=0,

то есть в виде:

(x2+y2)22(R2+r2)x22(R2r2)y2+(R2r2)2=0.

Это уравнение четвёртого порядка задаёт две пересекающиеся окружности и, очевидно, является формулой торического сечения. В точках пересечения окружностей пересекаются кривые, принадлежащие одновременно плоскости сечения и поверхности тора. Поэтому в этих точках секущая плоскость касается поверхности тора.

Примечания

Шаблон:Примечания

Литература

  1. Математический фильм «Dimensions», комментарий к главам 7 и 8 Шаблон:Wayback.