Полукруговой закон Вигнера
Перейти к навигации
Перейти к поиску
Шаблон:Вероятностное распределение
Полукруговой закон (или распределение) Вигнера — названное в честь физика Юджина Вигнера абсолютно непрерывное распределение вероятностей на прямой, график плотности которого получается после нормировки из полукруга, построенном на отрезке [-R,R] как на диаметре (тем самым, на самом деле график плотности оказывается полуэллипсом):
если , и иначе.
Это распределение было предложено Вигнером в 1955 году в связи с его исследованиями в области квантовой механики, как предельное распределение собственных значений для случайной эрмитовой матрицы большого размера.
Литература
- Шаблон:MathWorld
- Wigner Е. Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math., 62 (1955), 548-564.
- Wigner E. On the distribution of the roots of certain symmetric matrices. Ann. of Math., 67 (1958), 325-328.
- Я. Г. Синай, А. Б. Сошников, «Уточнение полукругового закона Вигнера в окрестности края спектра для случайных симметричных матриц», Функц. анализ и его прил., 32:2 (1998), 56-79
Шаблон:Math-stub Шаблон:Rq Шаблон:Список вероятностных распределений