Принцип причинности

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Другие значения3 При́нцип причи́нности (также известный как при́нцип причи́нно-сле́дственной свя́зи или закон причинности)— один из самых общих физических принципов[1], устанавливающий допустимые пределы влияния событий друг на друга[1].

В классической физике это утверждение означает, что любое событие A(t), произошедшее в момент времени t, может повлиять на событие B(t), произошедшее в момент времени t, только при t>t. Таким образом, классическая физика допускает произвольно большую скорость переноса взаимодействий.

При учёте релятивистских эффектов принцип причинности должен быть модифицирован, поскольку время становится относительным — взаимное расположение событий во времени может зависеть от выбранной системы отсчёта. В специальной теории относительности принцип причинности утверждает, что любое событие A(t,𝐫), произошедшее в точке пространства-времени (t,𝐫), может повлиять на событие B(t,𝐫),  произошедшее в точке пространства-времени (t,𝐫), только при условии: tt>0  и c2(tt)2(𝐫𝐫)2>0, где с — предельная скорость распространения взаимодействий, равная, согласно современным представлениям, скорости света в вакууме. Иными словами, интервал между событиями A и B должен быть времениподобен (событие A предшествует событию B в любой системе отсчёта). Таким образом, событие B причинно связано с событием A (являясь его следствием), только если оно находится в области абсолютно будущих событий светового конуса с вершиной в событии A — такое определение принципа причинности переходит без изменений и в общую теорию относительности. Если два события A и B разделены пространственноподобным интервалом (то есть ни одно из них не находится внутри светового конуса с вершиной в другом событии), то их последовательность может быть изменена на противоположную простым выбором системы отсчёта (СО): если в одной СО tA<tB, то в другой СО может оказаться, что tA>tB. Это не противоречит принципу причинности, потому что ни одно из этих событий не может влиять на другое.

В квантовой теории принцип причинности выражается как отсутствие корреляции результатов измерений в точках, разделённых пространственноподобным интервалом. В обычной трактовке это условие на операторы квантованных полей — для этих точек они коммутируют, таким образом, зависящие от них физические величины могут быть измерены одновременно без взаимных возмущений. В теории матрицы рассеяния мы не имеем дела с измеримыми величинами от бесконечно удалённого прошлого вплоть до бесконечно удалённого будущего, так что формулировка принципа причинности более сложна и выражается условием микропричинности Боголюбова.

В одной из теорий квантовой гравитации — теории причинной динамической триангуляции, разработанной Яном Амбьорном и Шаблон:Нп5, — принцип причинности является одним из условий, накладываемых на сопряжение элементарных симплексов, и именно благодаря ему пространство-время в макроскопических масштабах становится четырёхмерным.

Важно отметить, что даже при отсутствии причинного влияния события A на B эти события могут быть скоррелированы причинным влиянием на них третьего события C, находящегося в пересечении областей абсолютного прошлого для A и B: при этом интервалы CA и CB времениподобны, AB — пространственноподобен. Так, фазовая скорость электромагнитной волны может превышать скорость света в вакууме, в результате чего колебания поля в точках пространства-времени, разделённых пространственноподобным интервалом, оказываются скоррелированными. В квантовой механике состояния квантовых систем, разделённых пространственноподобным интервалом, также не обязаны быть независимыми (см. Парадокс Эйнштейна — Подольского — Розена). Однако эти примеры не противоречат принципу причинности, поскольку подобные эффекты невозможно использовать для сверхсветовой передачи взаимодействия. Можно сказать, что принцип причинности запрещает передачу информации со сверхсветовой скоростью.

Принцип причинности — эмпирически установленный принцип, справедливость которого неопровержима на сегодняшний день[1], но нет доказательств его универсальности.

См. также

Примечания

Шаблон:Примечания