Пространство Браунера
Перейти к навигации
Перейти к поиску
В функциональном анализе и связанных областях математики пространством Браунера называется полное локально выпуклое k-пространство обладающее последовательностью компактных множеств таких что любое компактное множество содержится в некотором .
Пространства Браунера названы в честь Калмана Браунера[1], первым начавшего их изучение. Все пространства Браунера стереотипны и находятся в отношении стереотипной двойственности с пространствами Фреше[2][3]:
- для всякого пространства Фреше его стереотипно сопряженное пространство[4] является пространством Браунера,
- и наоборот, для любого пространства Браунера его стереотипно сопряженное пространство является пространством Фреше.
Примеры
- Пусть — -компактное локально компактное топологическое пространство, а — пространство непрерывных функций на (со значениями в или ), наделенное обычной топологией равномерной сходимости на компактах в . Сопряженное пространство мер с компактным носителем на с топологией равномерной сходимости на компактах в пространстве является пространством Браунера.
- Пусть — гладкое многообразие и — пространство гладких функций на (со значениями в или ), наделенное обычной топологией равномерной сходимости по каждой производной на компактах в . Сопряженное пространство распределений с компактным носителем на с топологией равномерной сходимости на ограниченных множествах в пространстве является пространством Браунера.
- Пусть — многообразие Штейна и — пространство голоморфных функций на , наделенное обычной топологией равномерной сходимости на компактах в . Сопряженное пространство аналитических функционалов на с топологией равномерной сходимости на ограниченных множествах в пространстве является пространством Браунера.
- Пусть — компактно порожденная группа Штейна. Пространство голоморфных функций экспоненциального типа на , является пространством Браунера относительно естественной топологии.[3]