Теорема Эрдёша — Секереша

Материал из testwiki
Перейти к навигации Перейти к поиску
Цепь из четырёх рёбер с положительным наклоном на множестве из 17 точек. Если образовать последовательность y-координат этих точек, в порядке их x-координат, теорема Эрдёша — Секереша гарантирует, что существует либо цепь такого типа, либо цепь той же длины, в которой все наклоны отрицательны. Однако, если центральная точка отсутствует, такая цепь не существовала бы.

Теорема Э́рдёша — Се́кереша в комбинаторике — утверждение, уточняющее одно из следствий теоремы Рамсея для финитного случая. В то время как теорема Рамсея облегчает доказательство того, что каждая последовательность разных действительных чисел содержит монотонно возрастающую бесконечную подпоследовательность или монотонно убывающую бесконечную подпоследовательность, результат, доказанный Палом Эрдёшем и Дьёрдем Секерешем, идёт дальше. Для данных r, s они показали, что любая последовательность разных чисел длины не менее (r1)(s1)+1 содержит монотонно возрастающую подпоследовательность длины r или монотонно убывающую длины s. Доказательство появилось в той же самой работе 1935 года, что и задача со счастливым концом.[1]

Пример

Для r=3 и s=2, теорема говорит, что любая перестановка трёх чисел имеет возрастающую подпоследовательность длиной три или убывающую подпоследовательность длиной два. Из шести перестановок чисел 1, 2, 3:

  • 123 имеет возрастающую подпоследовательность длиной три;
  • 132 имеет убывающую подпоследовательность 32;
  • 213 имеет убывающую подпоследовательность 21;
  • 231 имеет две убывающие подпоследовательности: 21 и 31;
  • 312 имеет две убывающие подпоследовательности: 31 и 32;
  • 321 имеет три убывающие подпоследовательности длины два: 32, 31, и 21.

Геометрическая интерпретация

Позиции чисел в последовательности можно интерпретировать как x-координаты точек в евклидовой плоскости, а сами числа как y-координаты; с другой стороны, для любого множества точек на плоскости их y-координаты, упорядоченные по их x-координатам, образуют последовательность чисел (если только два числа не имеют двух одинаковых x-координат). При такой связи между последовательностями и множествами точек теорему Эрдёша — Секереша можно интерпретировать как утверждение, что для любого множества из rs+1 или более точек найдётся ломаная из r положительно наклоненных отрезков или из s отрезков с отрицательным наклоном. Например, при r=s=4 любое множество из 17 или более точек имеет цепь из четырёх рёбер, в котором все наклоны имеют одинаковый знак.

Доказательство

Теорема Эрдёша — Секереша может быть доказана несколькими разными способами. Майкл Стил дает обзор шести разных доказательств теоремы, в том числе с использованием принципа Дирихле и теоремы Дилуорса.[2] Прочие способы доказательства, приводимые Стилом, включают оригинальное доказательство Эрдёша и Секереша и доказательство Блэквелла, Ловаса и самого Стила.[3][4][5]Доказательство также есть в книгеШаблон:Sfn.

Доказательство через принцип Дирихле

Шаблон:MainВ последовательности длины (r1)(s1)+1 пометим каждое число ni парой (ai,bi), где ai — длина наибольшей монотонно возрастающей подпоследовательности, заканчивающейся на ni, bi длина наибольшей монотонно убывающей подпоследовательности, заканчивающейся на ni. Все числа в последовательности помечены различными парами: если i<j и ninj, то ai<aj; если ninj, то bi<bj. Но есть всего (r1)(s1) возможных пар, если air1, а bis1, так что по принципу Дирихле существует i, для которого ai или bi выходит за пределы этого ограничения. Если ai выходит за пределы, то ni — часть возрастающей подпоследовательности длины не меньше r, если bi выходит за пределы, то ni — часть убывающей подпоследовательности длины не меньше s.

См. также

Примечания

Шаблон:Примечания

Источники

Литература