Уровенный эллипсоид
Уровенный эллипсоид — одна из приближённых форм Земли, используемых в геодезии: эллипсоид вращения, поверхность которого совпадает с уровенной поверхностью создаваемого им поляШаблон:Sfn.
Понятие об уровенном эллипсоиде
Фигура и гравитационное поле Земли тесно взаимосвязаны. При определении потенциала силы тяжести Земли могут возникнуть трудности, обуславливаемые сложной фигурой Земли и особенностями распределения плотностей масс.
Эту задачу можно упростить, если представить гравитационное поле Земли в виде двух полей: нормальное и аномальное поля. Их следует рассматривать отдельно.
Обычно в геодезии используется нормальная Земля в виде идеальной планеты. В этом случае она имеет форму эллипсоида вращения
,
где — координаты точки на поверхности эллипсоида; — большая и малая полуоси этого эллипсоида.
Эта поверхность является уровенной поверхностью нормального потенциала силы тяжести. Это означает, что на поверхности эллипсоида выполняется условие
,
где — постоянная.
Такой эллипсоид и называется уровеннымШаблон:Sfn. Использование поля силы тяжести уровенного эллипсоида в качестве нормального поля удобно в геодезии, так как в этом случае одна и та же поверхность будет отсчётной при решении как геометрических, так и физических задач.
Для того, чтобы уровенный эллипсоид можно было назвать близким к реальной Земле, должны выполняться следующие условияШаблон:SfnШаблон:Sfn:
- Центр уровенного эллипсоида должен совпадать с центром масс Земли;
- Главная ось инерции, являющаяся его осью вращения, должна совпадать с осью вращения Земли;
- Угловые скорости вращения эллипсоида и реальной Земли должны быть одинаковыми, то есть
- Массы Нормальной и реальной Земли должны быть равны, то есть
- Зональные гармонические коэффициенты второй степени Нормальной и реальной Земли должны быть равны, то есть
- Нормальный потенциал на поверхности Нормальной Земли должен быть равен действительному потенциалу на среднем уровне моря , то есть .