Устранимость сечений
Устранимость сечений (теорема Генцена, элиминационная теорема) — свойство логических исчислений, согласно которому всякую секвенцию, выводимую в данном исчислении, можно вывести без применения правила сеченийШаблон:Sfn. Играет фундаментальную роль в теории доказательств и важную методологическую роль в математической логике в целом в связи с тем, что предоставляет конструктивный метод доказательства непротиворечивости, в частности, для классической и интуиционистской логик первого порядка[1].
Для классического и интуиционистского исчислений секвенций свойство доказано Генценом в 1934 году. В 1953 году высказана гипотеза Такеути, согласно которой устранимость сечений имеет место для простой теории типов и соответствующих ей логик высших порядков, впоследствии она нашла подтверждение — для классической логики второго порядка устранимость сечений доказал Шаблон:Iw, для простой теории типов — Такахаси и Шаблон:Iw, вскоре найдены доказательства для серии неклассических теорий высших порядков (Драгалин) и развитых теорий типов (Шаблон:Iw для системы F).
Символическая формулировка: пусть и — доказуемые секвенции исчисления ; если — секвенция исчисления , то она доказуемаШаблон:Sfn.