Фундированное множество
Фундированное множество — частично упорядоченное множество , у которого любое непустое подмножество имеет минимальный элемент. Под минимальным элементом в здесь понимается , такой, что для любого из следует Шаблон:Sfn. В математике фундированное множество также известно как полная полурешётка.
(Некоторые авторыШаблон:Какие дополнительно требуют, чтобы отношение R было связным.)
Эквивалентное определение при условии использования аксиомы выбора состоит в том, что множество M с отношением R является фундированным тогда и только тогда, когда оно удовлетворяет условию обрыва убывающих цепей, то есть не существует бесконечной последовательности x0, x1, x2, … элементов из M такой, что xn+1 R xn для любого индекса n.
Примеры
Примеры фундированных множеств без полного порядка.
- Множество целых чисел с частичным порядком a < b тогда и только тогда, когда a делит b и a ≠ b
- Множество всех конечных строк на конечном алфавите с частичным порядком s < t тогда и только тогда, когда s строго включается как подстрока в t
Принцип трансфинитной индукции
Шаблон:Main Пусть — фундированное множество и . Тогда если для любого из включения следует , то совпадает с Шаблон:Sfn.
Нётерова индукция
Нётерова индукция — это обобщение трансфинитной индукции, которое заключается в следующем.
Пусть — фундированное множество, — некоторое утверждение об элементах множества , и пусть мы хотим показать, что верно для всех . Для этого достаточно показать, что если , и верно для всех таких , что , то также верно. Другими словами