Хемосинтез

Материал из testwiki
Перейти к навигации Перейти к поиску

Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями или археями. Это явление было открыто в 1887 году русским учёным С. Н. Виноградским. Микроорганизмов, способных к хемосинтезу, Виноградский называл аноргоксиданты. Название хемосинтез ввёл немецкий химик и ботаник Вильгельм Пфеффер в 1897 году.

Необходимо отметить, что выделяющаяся в реакциях окисления неорганических соединений энергия не может быть непосредственно использована в процессах ассимиляции. Сначала эта энергия переводится в энергию макроэргических связей АТФ и только потом тратится на синтез органических соединений.

Распространение и экологические функции

Гигантские многощетинковые черви (Riftia pachyptila) имеют орган, содержащий хемосинтетических бактерий вместо пищеварительной системы.

Хемосинтезирующие организмы (например, серобактерии) могут жить в океанах на огромной глубине, в тех местах, где из разломов земной коры в воду выходит сероводород. Конечно же, кванты света не могут проникнуть в воду на глубину около 3—4 километров (на такой глубине находится большинство рифтовых зон океана). Таким образом, хемосинтетики — единственные организмы на Земле, не зависящие от энергии солнечного света и являющиеся первичными продуцентами. Хемосинтетические организмы могут потребляться другими организмами в океане или образовывать симбиотические ассоциации с гетеротрофами. Гигантские многощетинковые черви используют бактерий в их Шаблон:Нп3 для связывания диоксида углерода (используя сероводород как источник энергии) продуцирования сахаров и аминокислот[1]. В некоторых реакциях получается сера[2]

12HA2S+6COA2CA6HA12OA6+6HA2O+12S

Вместо высвобождения кислорода при фиксации углекислого газа во время фотосинтеза, из сероводорода в процессе хемосинтеза получаются водорастворимые глобулы серы. В бактериях способных к хемоавторофии в форме хемосинтеза, таких как Шаблон:Нп3[3], пурпурные глобулы серы окрашивают цитоплазму в соответствующий цвет. Большие популяции животных могут поддерживаться за счет хемосинтезирующих бактерий и архей в белых и черных курильщиках, метановых клатратах, холодных просачиваниях, Шаблон:Нп3, изолированных подземных водных пещерах.

С другой стороны, аммиак, который используется нитрифицирующими бактериями, выделяется в почву при гниении остатков растений или животных. В этом случае жизнедеятельность хемосинтетиков косвенно зависит от солнечного света, так как аммиак образуется при распаде органических соединений, полученных за счёт энергии Солнца.

Роль хемосинтетиков для всех живых существ очень велика, так как они являются непременным звеном природного круговорота важнейших элементов: серы, азота, железа и др. Хемосинтетики важны также в качестве природных потребителей таких ядовитых веществ, как аммиак и сероводород. Огромное значение имеют нитрифицирующие бактерии, которые обогащают почву нитратами и нитритами, — форма азота, преимущественно усваиваемая растениями. Некоторые хемосинтетики (в частности, серобактерии) используются для очистки сточных вод.

По современным оценкам, биомасса «подземной биосферы», которая находится, в частности, под морским дном и включает хемосинтезирующих анаэробных метанокисляющих архебактерий, может превышать биомассу остальной биосферы.[4]

Была выдвинута гипотеза о том, что хемосинтез может поддерживать жизнь под поверхностью Марса, спутника Юпитера - Европы и других планет [5]. Хемосинтез также может быть первым типом метаболизма, который возник на Земле, что привело позже к возникновению клеточного дыхания и фотосинтеза.

См. также

Примечания

Шаблон:Примечания

Шаблон:^ Шаблон:Внешние ссылки Шаблон:Обмен веществ у бактерий

  1. Шаблон:Книга
  2. Campbell N.A. e.a. (2008) Biology 8. ed. Pearson International Edition, San Francisco. Шаблон:ISBN
  3. Шаблон:Книга
  4. Шаблон:Cite web
  5. Julian Chela-Flores (2000): "Terrestrial microbes as candidates for survival on Mars and Europa", in: Seckbach, Joseph (ed.) Journey to Diverse Microbial Worlds: Adaptation to Exotic Environments, Springer, pp. 387–398. Шаблон:ISBN