Число Шеннона

Материал из testwiki
Перейти к навигации Перейти к поиску

Число́ Ше́ннона — оценочное минимальное количество неповторяющихся шахматных партий, вычисленное в 1950 году американским математиком Клодом Шенноном. Составляет приблизительно Шаблон:Val. Динамику роста этого числа можно проследить на примере обычной шахматной партии: для первого хода у обеих сторон есть 40 различных вариантов, для второго — ещё 676, для третьего — еще 576. Таким образом, всего на третьем ходу партии существует 40*676*576≈15,5 млн различных вариантов партии. Если исключить откровенно глупые ходы, то это число можно сократить на 10—20 %.

Вычисление числа Шеннона описано в работе «Программирование компьютера для игры в шахматы» (Шаблон:Lang-en), опубликованной в марте 1950 года в журнале Philosophical Magazine и ставшей одним из фундаментальных трудов в развитии компьютерных шахмат как дисциплины. В основу вычислений легло предположение о том, что каждая игра длится в среднем 40 ходов и на каждом ходе игрок делает выбор в среднем из 30 вариантов.[1] Для сравнения — количество атомов в наблюдаемой Вселенной составляет по разным оценкам от Шаблон:Val до Шаблон:Val, то есть в Шаблон:Val раз меньше числа Шеннона.

Кроме этого, Шеннон высчитал и количество возможных позиций, равняющееся примерно:

64!32!8!22!61043.

Это число, однако, включает также ситуации, исключаемые правилами игры и поэтому недосягаемые в дереве возможных ходов. В настоящее время появился ряд работ, уточняющих[2] или даже опровергающих это число[3].

Примечания

Шаблон:Примечания

Литература

Шаблон:Гугология