RC4
RC4 (от Шаблон:Lang-en или Шаблон:Lang-en2), также известен как ARC4 или ARCFOUR (Шаблон:Lang-en2) — потоковый шифр, широко применяющийся в различных системах защиты информации в компьютерных сетях (например, в протоколах SSL и TLS, алгоритмах обеспечения безопасности беспроводных сетей WEP и WPA).
Шифр разработан компанией Шаблон:Iw, и для его использования требуется лицензия.
Алгоритм RC4, как и любой потоковый шифр, строится на основе генератора псевдослучайных битов. На вход генератора записывается ключ, а на выходе читаются псевдослучайные биты. Длина ключа может составлять от 40 до 2048 бит[1]. Генерируемые биты имеют равномерное распределение.
Основные преимущества шифра:
- высокая скорость работы;
- переменный размер ключа.
RC4 довольно уязвим, если:
- используются не случайные или связанные ключи;
- один ключевой поток используется дважды.
Эти факторы, а также способ использования могут сделать криптосистему небезопасной (например, WEP).
История
Потоковый шифр RC4 был создан Рональдом Ривестом, сотрудником компании Шаблон:Iw, в 1987 году. Сокращение «RC4» официально обозначает «Rivest cipher 4» или «шифр Ривеста» («4» — номер версии; см. RC2, RC5, RC6; RC1 никогда не публиковался; RC3 разрабатывался, но в нём была найдена уязвимость), но его часто считают сокращением от «Ron’s code» («код Рона»)[2].
В течение семи лет шифр являлся коммерческой тайной, и точное описание алгоритма предоставлялось только после подписания соглашения о неразглашении, но в сентябре 1994 года его описание было анонимно отправлено в список рассылки (Шаблон:Lang-en) «Cypherpunks»[3]. Вскоре описание RC4 было опубликовано в группе новостей usenet «sci.crypt». Оттуда исходный код попал на множество сайтов в сети Интернет. Опубликованный алгоритм на выходе выдавал шифротексты, совпадающие с шифротекстами, выдаваемыми подлинным RC4. Обладатели легальных копий исходного кода RC4 подтвердили идентичность алгоритмов при различиях в обозначениях и структуре программы.
Поскольку данный алгоритм известен, он более не является коммерческой тайной. Однако, название «RC4» является торговой маркой компании Шаблон:Iw. Чтобы избежать возможных претензий со стороны владельца торговой марки, шифр иногда называют «ARCFOUR» или «ARC4», имея в виду Шаблон:Lang-en — «предполагаемый» RC4 (поскольку «RSA Security» официально не опубликовала алгоритм).
Алгоритм шифрования RC4 применяется в некоторых широко распространённых стандартах и протоколах шифрования (например, WEP, WPA, SSL и TLS).
RC4 стал популярен благодаря:
- простоте его аппаратной и программной реализации;
- высокой скорости работы алгоритма в обоих случаях.
В США длина ключа, рекомендуемая для использования внутри страны, равна 128 битам. Соглашение, заключённое между «SPA» (Шаблон:Lang-en) и правительством США, разрешило экспортировать шифры RC4 с длиной ключа до 40 бит. 56-и битные ключи разрешено использовать заграничным отделениям американских компаний[4].
Описание алгоритма
Ядро алгоритма поточных шифров состоит из функции — генератора псевдослучайных битов (гаммы), который выдаёт поток битов ключа (ключевой поток, гамму, последовательность псевдослучайных битов).
Алгоритм шифрования.
- Функция генерирует последовательность битов ().
- Затем последовательность битов посредством операции «суммирование по модулю два» (xor) объединяется с открытым текстом (). В результате получается шифрограмма ():
.
Алгоритм расшифровки.
- Повторно создаётся (регенерируется) поток битов ключа (ключевой поток) ().
- Поток битов ключа складывается с шифрограммой () операцией «xor». В силу свойств операции «xor» на выходе получается исходный (незашифрованный) текст ():
RC4 — фактически класс алгоритмов, определяемых размером блока (в дальнейшем S-блока). Параметр n является размером слова для алгоритма и определяет длину S-блока. Обычно, n = 8, но в целях анализа можно уменьшить его. Однако для повышения безопасности необходимо увеличить эту величину. В алгоритме нет противоречий на увеличение размера S-блока . При увеличении n, допустим, до 16 бит, элементов в S-блоке становится 65 536 и соответственно время начальной итерации будет увеличено. Однако, скорость шифрования возрастёт[5].
Внутреннее состояние RC4 представляется в виде массива размером 2n и двух счётчиков. Массив известен как S-блок, и далее будет обозначаться как S. Он всегда содержит перестановку 2n возможных значений слова. Два счётчика обозначены через i и j.
Инициализация RC4 состоит из двух частей:
- инициализация S-блока;
- генерация псевдослучайного слова
K.
Инициализация S-блока
Алгоритм также известен как «key-scheduling algorithm» или «KSA». Этот алгоритм использует ключ, подаваемый на вход пользователем, сохранённый в Key, и имеющий длину L байт.
Инициализация начинается с заполнения массива S, далее этот массив перемешивается путём перестановок, определяемых ключом. Так как только одно действие выполняется над S, то должно выполняться утверждение, что S всегда содержит один набор значений, который был дан при первоначальной инициализации (S[i] := i).
for i from 0 to 255
S[i] := i
endfor
j := 0
for i from 0 to 255
j := ( j + S[i] + Key[ i mod L ] ) mod 256 // n = 8 ; 28 = 256
поменять местами S[i] и S[j]
endfor
Генерация псевдослучайного слова K

Эта часть алгоритма называется генератором псевдослучайной последовательности (Шаблон:Lang-en, Шаблон:Lang-en2).
Генератор ключевого потока RC4 переставляет значения, хранящиеся в S. В одном цикле RC4 определяется одно n-битное слово K из ключевого потока. В дальнейшем ключевое слово будет сложено по модулю два с исходным текстом, которое пользователь хочет зашифровать, и получен зашифрованный текст.
i := 0
j := 0
while Цикл генерации:
i := ( i + 1 ) mod 256
j := ( j + S[i] ) mod 256
поменять местами S[i] и S[j]
t := ( S[i] + S[j] ) mod 256
K := S[t]
сгенерировано псевдослучайное слово K (для n = 8 будет сгенерирован один байт)
endwhile
Безопасность
В отличие от современных шифров (таких, как eSTREAM), RC4 не использует nonce (от англ. nonce — «number that can only be used once» — число, которое может быть использовано один раз) наряду с ключом. Это значит, что если один ключ должен использоваться в течение долгого времени для шифрования нескольких потоков, сама криптосистема, использующая RC4, должна комбинировать оказию и долгосрочный ключ для получения потокового ключа для RC4. Один из возможных выходов — генерировать новый ключ для RC4 с помощью хеш-функции от долгосрочного ключа и nonce. Однако многие приложения, использующие RC4, просто конкатенируют ключ и nonce. Из-за этого и слабого расписания ключей, используемого в RC4, приложение может стать уязвимым[6][7][8]. Поэтому он был признан устаревшим многими софтверными компаниями, такими как Microsoft. Например, в .NET Framework от Microsoft отсутствует реализация RC4.
Здесь будут рассмотрены некоторые атаки на шифр и методы защиты от них.
Исследования Руза и восстановление ключа из перестановки
В 1995 году Андрю Руз (Шаблон:Lang-en) экспериментально пронаблюдал, что первый байт ключевого потока коррелирован с первыми тремя байтами ключа, а первые несколько байт перестановки после алгоритма расписания ключей (Шаблон:Lang-en) коррелированы с некоторой линейной комбинацией байт ключа[9]. Эти смещения не были доказаны до 2007 года, когда Пол, Рафи и Мэйтрэ доказали коррелированность ключа и ключевого потока. Также Пол и Мэйтрэ доказали коррелированность перестановки и ключа. Последняя работа также использует коррелированность ключа и перестановки для того, чтобы создать первый алгоритм полного восстановления ключа из последней перестановки после KSA, не делая предположений о ключе и векторе инициализации (Шаблон:Lang-en, Шаблон:Lang-en2). Этот алгоритм имеет постоянную вероятность успеха в зависимости от времени, которая соответствует квадратному корню из сложности полного перебора. Позднее было сделано много работ о восстановлении ключа из внутреннего состояния RC4.
Атака Флурера, Мантина и Шамира (ФМШ)
В 2001 году Флурер, Мантин и Шамир опубликовали работу об уязвимости ключевого расписания RC4. Они показали, что первые байты ключевого потока среди всех возможных ключей неслучайны. Из этих байтов можно с высокой вероятностью получить информацию об используемом шифром ключе. И если долговременный ключ и nonce просто склеиваются для создания ключа шифра RC4, то этот долговременный ключ может быть получен с помощью анализа достаточно большого количества сообщений, зашифрованных с использованием данного ключа[10]. Эта уязвимость и некоторые связанные с ней эффекты были использованы при взломе шифрования WEP в беспроводных сетях стандарта IEEE 802.11. Это показало необходимость скорейшей замены WEP, что повлекло за собой разработку нового стандарта безопасности беспроводных сетей WPA.
Криптосистему можно сделать невосприимчивой к этой атаке, если отбрасывать начало ключевого потока. Таким образом, модифицированный алгоритм называется «RC4-drop[n]», где n — количество байтов из начала ключевого потока, которые следует отбросить. Рекомендовано использовать n = 768, консервативная оценка составляет n = 3072[11][12].
Атака базируется на слабости Шаблон:Iw. Зная первое псевдослучайное слово K и m байтов входного ключа Key, используя слабость в алгоритме генерации псевдо-случайного слова K , можно получить m + 1 байт входного ключа. Повторяя шаги добывается полный ключ.
При атаке на WEP, для n = 8 IV имеет вид (B; 255; N), где B — от 3 до 8, а N любое число . Для определения около 60 вариантов N потребуется перехватить примерно 4 миллиона пакетов.[10]
Атака Кляйна
В 2005 году Андреас Кляйн представил анализ шифра RC4, в котором он указал на сильную коррелированность ключа и ключевого потока RC4. Кляйн проанализировал атаки на первом раунде (подобные атаке ФМШ), на втором раунде и возможные их улучшения. Он также предложил некоторые изменения алгоритма для усиления стойкости шифра. В частности, он утверждает, что если поменять направление цикла на обратное в алгоритме ключевого расписания, то можно сделать шифр более стойким к атакам типа ФМШ[1].
Комбинаторная проблема
В 2001 году Ади Шамир и Ицхак Мантин первыми поставили комбинаторную проблему, связанную с количеством всевозможных входных и выходных данных шифра RC4. Если из всевозможных 256 элементов внутреннего состояния шифра известно x элементов из состояния (x ≤ 256), то, если предположить, что остальные элементы нулевые, максимальное количество элементов, которые могут быть получены детерминированным алгоритмом за следующие 256 раундов, также равно x. В 2004 году это предположение было доказано Сорадюти Полом (Шаблон:Lang-en) и Бартом Пренелем (Шаблон:Lang-en)[13].
Атака NOMORE (2015)
Летом 2015 года Мэти Ванхоф (Mathy Vanhoef) и Франк Писсенс (Frank Piessens) из университета Левена в Бельгии продемонстрировали реальную атаку на протоколы TLS и TKIP, использующие RC4 для шифрования передаваемых данных, получившую название «Numerous Occurrence MOnitoring & Recovery Exploit» (NOMORE)[14]. Идея взлома базируется на принципе MITM. Встроившись в канал передачи данных, атакующая сторона генерирует серверу большое количество запросов, вынуждая его в ответ возвращать куки, зашифрованные одним и тем же ключом. Имея в распоряжении около 9x227 ~ 230 пар {открытый текст, шифротекст}, злоумышленник получает возможность на основе статистических методов Флюрер-Макгрю и ABSAB с вероятностью 94 % восстановить ключ и, следовательно, зашифрованные куки. Практические временные затраты составили около 52 часов, верхняя же оценка потребного времени на момент демонстрации составила около 72 часов[15].
Модификации RC4
Ранее рассматривались атаки, основанные на коррелируемости первых байт шифрованного текста и ключа. Подобные слабости алгоритма могут быть решены отбрасыванием начальной части шифрованного текста[16]. Надёжным считается отбрасывание первых 256, 512, 768 и 1024 байт. Исследования начала шифротекста были проведены для показания ненадёжности определённого числа первых байтов, что может привести к получению злоумышленником ключа шифрования. Были предложены несколько модификаций RC4 выполняющие поставленную задачу усиления безопасности при использовании алгоритма: RC4A, VMPC, RC4+.
RC4A
В 2004 году свет увидела работа Souradyuti Paul и Bart Preneel, в которой предлагалась модификация RC4A[17].
Для RC4A используется два S-блока вместо одного, как в RC4, обозначим S₁ и S₂. Для них соответствующе используются два счётчика j₁, j₂. Счётчик i, как и для RC4, используется в единственном числе для всего алгоритма.
Принцип выполнения алгоритма остается прежним, но имеется ряд отличий:
S₁является параметром дляS₂.- За одну итерацию, то есть за одно увеличение индекса
i, генерируется два байта шифротекста.
Алгоритм :
i := 0
j₁ := 0
j₂ := 0
while Цикл генерации:
i := i + 1
j₁ := ( j₁ + S₁[i] ) mod 256
поменять местами S₁[i] и S₁[j₁]
I₂ := ( S₁[i] + S₁[j₁] ) mod 256
output := S₂[I₂]
j₂ = ( j₂ + S₂[i] ) mod 256
поменять местами S₂[i] и S₂[j₂]
I₁ = ( S₂[i] + S₂[j₂] ) mod 256
output := S₁[I₁]
endwhile
Скорость шифрования данного алгоритма может быть увеличена за счёт распараллеливания.
RC4+
В 2008 году была разработана и предложена модификация RC4+. Авторы Subhamoy Maitra и Goutam Paul модифицировали инициализацию S-блока(KSA+), использовав 3-уровневое скремблирование. Также модификации был подвергнут алгоритм генерации псевдослучайного слова (PRGA+)[18].
Алгоритм:
Все арифметические операции выполняются по mod 256. Символами «<<» и «>>» обозначены битовые сдвиги влево и вправо соответственно. Символ «⊕» обозначает операцию «исключающее ИЛИ» while Цикл генерации: i := i + 1 a := S[i] j := j + a b := S[j] S[i] := b (поменяли местами S[i] и S[j]) S[j] := a c := S[ i<<5 ⊕ j>>3 ] + S[ j<<5 ⊕ i>>3 ] output ( S[a+b] + S[c⊕0xAA] ) ⊕ S[ j+b ] endwhile
Реализация
Работа многих поточных шифров основана на линейных регистрах сдвига с обратной связью (Шаблон:Lang-en). Это позволяет достичь высокой эффективности реализаций шифра в виде интегральной схемы (аппаратная реализация), но затрудняет программную реализацию таких шифров. Поскольку шифр RC4 не использует LFSR и основан на байтовых операциях, его удобно реализовывать программно. Типичная реализация выполняет от 8 до 16 машинных команд на каждый байт текста, поэтому программная реализация шифра должна работать быстро[19].
Криптосистемы и протоколы, использующие RC4
- WEP;
- Шаблон:Iw;
- MPPE;
- браузер Opera Mini[20];
- протокол SSL (вариативно);
- протокол SSH (вариативно);
- протокол RDP;
- Kerberos[21] (вариативно);
- SASL mechanism digest-MD5 (вариативно);
- формат PDF[22]
- Skype (вариативно)[23].
Слово «(вариативно)» означает, что RC4 является одним из нескольких алгоритмов шифрования, которые могут использоваться системой.
См. также
Примечания
Ссылки
- RSA security response to weaknesses in key scheduling algorithm of RC4.
- Письмо, содержащее описание алгоритма RC4, в списке рассылки «Cypherpunks».
- Klein A. «Attacks on the RC4 stream cipher». 27 февраля 2006 года (формат PostScript).
Шаблон:Симметричные криптосистемы
- ↑ 1,0 1,1 Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite mailing list
- ↑ Шаблон:Cite web
- ↑ Bruce Schneier. Applied cryptography. Second edition. John Wiley & Sons. 1996
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ DSpace
- ↑ Шаблон:Cite web
- ↑ 10,0 10,1 Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ «RC4-drop(nbytes)» Шаблон:Wayback. «Standard cryptographic algorithm naming» database.
- ↑ Шаблон:Статья
- ↑ Шаблон:Cite web
- ↑ Шаблон:Cite web
- ↑ Шаблон:Citation
- ↑ Шаблон:Citation
- ↑ Шаблон:Citation
- ↑ Шаблон:Cite web
- ↑ Ответы Шаблон:Wayback на вопровы пользователей браузера Opera mini.
- ↑ RFC 4757. The RC4-HMAC kerberos encryption types used by Microsoft Windows.
- ↑ PDF & PDF/A software | PDF Tools AG | Premium PDF technology Шаблон:Webarchive
- ↑ Шаблон:Cite web