Схема с разностями против потока: различия между версиями
imported>РобоСтася м checkwiki fixes (1, 2, 9, 17, 22, 26, 38, 48, 50, 52, 54, 64, 65, 66, 76, 81, 86, 88, 89, 101) |
(нет различий)
|
Текущая версия от 07:04, 14 сентября 2024
Схема с разностями против потока в вычислительной физике — класс методов дискретизации для решения (явными схемами) дифференциальных уравнений в частных производных гиперболического типа (гиперболических уравнений).
Например, одномерное уравнение волны имеет вид
Оно описывает распространение волны в направлении со скоростью . Такое уравнение также является математической моделью одномерной линейной адвекции. Рассматривая обыкновенную точку сетки , в одномерном случае есть только два допустимых направления, левое и правое. Если положительна, то левая сторона называется направлением против потока, а правая сторона называется направлением по потоку. (Если отрицательна, то наоборот). Если при использовании конечных разностей для пространственной производной содержит больше точек на стороне против потока, то схема называется схемой с разностями против потока[1].
Первого порядка
Простейший пример, пример первого порядка:[2]
Компактная форма
Определяя
- ,
два условных уравнения (1) и (2) можно записать в одном:
Такое уравнение представляет схемы с разностями против потока в общем виде. Стабильность схемы с разностями против потока определяется критерием Куранта — Фридрихса — Леви.[3]