Равномерно распределённая последовательность: различия между версиями
imported>WinterheartBot м Удаление шаблонов: {{Нп5}}×1 |
(нет различий)
|
Текущая версия от 08:58, 3 марта 2023
Равномерно распределённая последовательность — бесконечная последовательность вещественных чисел из заданного интервала (), в которой в любом ненулевом отрезке () доля элементов, попадающих в этот отрезок, стремится к отношению длины отрезка к длине интервала :
- ,
где — количество чисел из , попавших в .
Расхождением Dn для последовательности на отрезке называется величина
Последовательность оказывается равнораспределённой, если расхождение Dn стремится к нулю при n, стремящемся к бесконечности.
Равномерное распределение — довольно слабый критерий для выражения того факта, что последовательность заполняет сегмент, не оставляя пробелов. Для получения более строгих критериев и для построения последовательностей, которые распределены более равномерно, см. последовательность с низким расхождением.
Ключевым результатом, касающимся равномерно распределённых последовательностей, является теорема Вейля о равномерном распределении.