Модель Бозе — Хаббарда

Материал из testwiki
Версия от 02:03, 14 сентября 2024; imported>РобоСтася (checkwiki fixes (1, 2, 9, 17, 22, 26, 38, 48, 50, 52, 54, 64, 65, 66, 76, 81, 86, 88, 89, 101))
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Модель Бозе — Хаббарда даёт примерное описание физики взаимодействия бозонов на пространственной решётке. Она тесно связана с моделью Хаббарда, возникшей в физике твёрдого тела как приближённое описание сверхпроводящих систем и движения электронов между атомами твёрдого кристаллического вещества. Слово Бозе указывает на тот факт, что частица в системе — бозон. Впервые модель была введена Х. Гершем (Шаблон:Lang-en) и Г. Ноллмэном (Шаблон:Lang-en)[1] в 1963 году, модель Бозе — Хаббарда может использоваться при изучении систем подобных бозонным атомам в оптической решётке. В противоположность этому, модель Хаббарда применима к фермионам (электронам), а не бозонам. Кроме того, модель обобщается на сочетания Бозе- и Ферми-частиц, в этом случае, в соответствии с гамильтонианом, модель будет называться моделью Бозе — Ферми — Хаббарда.

Гамильтониан

Физика этой модели описывается гамильтонианом Бозе — Хаббарда в представлении вторичного квантования:

H^=ti,j(bibj+bjbi)+U2in^i(n^i1)μin^i,

где индекс i обозначает суммирование по всем узлам решётки трёхмерной решётки, а i,j означает суммирование по всем узлам j соседствующим с i. bi и bi — бозонные операторы рождения и уничтожения. Оператор n^i=bibi задаёт число частиц в узле i. Параметр t — это матричный элемент перехода, имеющий смысл подвижности бозонов в решётке. Параметр U описывает локальное взаимодействие частиц находящихся в одном узле, если U>0, то он описывает потенциал отталкивания и если U<0, то описывает притяжение, μхимический потенциал. Данный гамильтониан не рассматривает эффекты, которые малы в термодинамическом пределе, а именно, когда размер системы и число узлов стремятся к бесконечности. В то же время плотность узлов остаётся конечной[1].

Размерность Гильбертова пространства модели Бозе — Хаббарда растёт экспоненциально по отношению к числу частиц N и узлов решётки L. Она определяется по формуле: Db=(Nb+L1)!Nb!(L1)!, в то время как в модели Ферми — Хаббарда задаётся формулой: Df=L!Nf!(LNf)!. Различные результаты следуют из различия статистики для фермионов и бозонов. Для смеси Бозе- и Ферми-частиц, соответствующее гильбертово пространство в модели Бозе — Ферми — Хаббарда — это прямое тензорное произведение гильбертовых пространств бозонной модели и фермионной модели.

Фазовая диаграмма

При нулевой температуре, модель Бозе — Хаббарда (при отсутствии беспорядка) находится либо в состоянии изолятора Мотта — состояние с малым t/U, либо в сверхтекучем состоянии — с большим t/U[2]. Изолятор Мотта характеризуется целочисленной плотностью бозонов, наличием запрещённой зоны для возбуждений частица-дырка и нулевой сжижаемостью. При наличии беспорядка, присутствует третья фаза «стекло Бозе». Она характеризуется конечной сжижаемостью, отсутствием запрещённой зоны, бесконечной сверхтекучестью.[3] Это изолирующее состояние, несмотря на наличие ширины запрещённой зоны, из-за того, что низкая вероятность туннелирования предотвращает образование возбуждений, которые хотя и близки по энергиям, но пространственно разделены.

Реализация в оптических решётках

Ультрахолодные атомы в оптических решётках считаются стандартной реализацией модели Бозе — Хаббарда. Возможность изменения параметров модели при помощи простых экспериментальных методов, отсутствие динамики решётки в электронных системах — всё это обеспечивает очень хорошие условия по экспериментальному изучению этой модели.[4][5]

Гамильтониан в формализме вторичного квантования описывает газ из ультрахолодных атомов в оптической решётке в следующем виде:

H=d3rψ^(r)(22m2+Vlatt.(x))ψ^(r)+g2d3rψ^(r)ψ^(r)ψ^(r)ψ^(r)μd3rψ(r)ψ^(r),

где Vlatt — оптический потенциал решётки, g — амплитуда взаимодействия (здесь предполагается контактное взаимодействие), μ — химический потенциал. Стандартное приближение сильно связанных электронов

ψ^(r)=iwiα(r)biα

даёт гамильтонианы Бозе — Хаббарда, если дополнительно допустить, что

wiα(r)wjβ(r)wkγ(r)wlδ(r)d3r=0

за исключением случаев i=j=k=l,α=β=γ=δ=0. Здесь wiα(r) — это Шаблон:Нп3 для частицы в потенциале оптической решётки, локализованном вокруг узла i решётки и для α Блоховской зоны.[6]

Тонкие различия и приближения

Приближение сильно связанных электронов существенно упрощает вторичное квантование гамильтониана, в то же время вводя ряд ограничений:

  • Параметры U и J на самом деле могут зависеть от плотности, как отброшенные члены, они фактически не равны нулю; вместо одного параметра U, энергия взаимодействия частиц n может быть описана следующим: Un примерно, но не равно U [6]
  • При рассмотрении быстрой динамики решётки, к гамильтониану Бозе — Хаббарда должны быть добавлены дополнительные условия, так что будет исполняться уравнение Шрёдингера. Оно выходит из зависимости функций Ванье от времени.[7]

Экспериментальные результаты

Квантовые фазовые переходы в модели Бозе — Хаббарда экспериментально наблюдались группой учёных из Греньера (Greiner) и др.[8] в Германии. Параметры взаимодействия Un, зависящие от плотности, наблюдались группой Шаблон:Нп3.[9]

Дальнейшие приложения модели

Модель Бозе — Хаббарда также представляет интерес для тех, кто работает в области квантовых вычислений и квантовой информации. С помощью этой модели можно исследовать запутанность ультрахолодных атомов.[10]

Численное моделирование

При вычислении низкоэнергетических состояний член, пропорциональный n2U, что большое заниание одной стороны маловероятно, позволяя усекать местное гильбертово пространство к состояниям, содержащим не более d< частиц. Тогда локальная размерность гильбертова пространства будет d+1. Размерность полного гильбертового пространства растёт экспоненциально с числом мест в решётке, поэтому компьютерным моделированием огрничиваются системы из 15-20 частиц в 15-20 узлах решётки. Экспериментальные системы содержат несколько миллионов сторон решётки со средним заполнением выше единицы. Для численной симуляции этой модели, алгоритм точной диагонализации представлен в работе под сноской.[11]

Одномерные решётки могут быть рассмотрены методом Шаблон:Нп3 и связанными с этим методиками, такой как алгоритм Шаблон:Нп3. Это включает в себя расчёт фонового состояния гамильтониана для систем из тысяч частиц на сторонах решётки и моделирование её динамики, регулирумой уравнение Шрёдингера. Высшие мерности решётки моделировать значительно сложнее при повышении запутанности.[12]

Все мерности могут рассматриваться алгоритмами Шаблон:Нп3, которые дают возможность изучать свойства тепловых состояний гамильтониана, а также конкретное фоновое состояние.

Обобщения

Подобные Бозе — Хаббарда гамильтонианы могут быть получены для:

  • систем с плотность-плотность взаимодействиями Vninj
  • дальним дипольным взаимодействием [13]
  • внутренней спиновой структурой (спин-1 модели Бозе — Хаббарда) [14]
  • неупорядоченных систем [15]

См. также

Примечания

Шаблон:Примечания