Распределение Парето

Материал из testwiki
Версия от 18:48, 30 октября 2023; imported>InternetArchiveBot (Спасено источников — 1, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.9.5)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Шаблон:Вероятностное распределение Распределе́ние Паре́то в теории вероятностей — двухпараметрическое семейство абсолютно непрерывных распределений, являющихся степенными. Называется по имени Вилфредо Парето. Встречается при исследовании различных явлений, в частности, социальных, экономических и физических[1]. Вне области экономики иногда называется также распределением Брэдфорда.

Определение

Пусть случайная величина X такова, что её распределение задаётся равенством

FX(x)=P(X<x)=1(xmx)k, xxm,

где xm,k>0. Тогда говорят, что X имеет распределение Парето с параметрами xm и k. Плотность распределения Парето имеет вид

fX(x)={kxmkxk+1,xxm,0,x<xm.

Моменты

Моменты случайной величины, имеющей распределение Парето, задаются формулой

𝔼[Xn]=kxmnkn,

откуда, в частности,

𝔼[X]=kxmk1,
D[X]=(xmk1)2kk2.

Приложения

Вилфредо Парето изначально использовал это распределение для описания распределения благосостояния, а также распределения дохода[2]. Его «правило 20 к 80» (которое гласит: 20 % популяции владеет 80 % богатства) однако зависит от конкретной величины k, и утверждается, что фактически встречаются существенные количественные отклонения, например, данные самого Парето по Британии в его труде «Курс политической экономии» говорят, что там примерно 30 % населения владеет 70 % общего дохода.

Распределение Парето встречается не только в экономике. Можно привести следующие примеры:

  • В лингвистике распределение Парето известно под именем закона Ципфа (для разных языков показатель степени может несколько различаться, также существует небольшое отклонение от простой степенной зависимости у самых частотных слов, однако в целом степенной закон описывает это распределение достаточно хорошо). Частными проявлениями этой закономерности можно считать:
    • Зависимость абсолютной частоты слов (сколько всего раз каждое конкретное слово встретилось) в достаточно длинном тексте от ранга (порядкового номера при упорядочении слов по абсолютной частоте). Степенной характер остается вне зависимости от того, приводятся ли слова к начальной форме или берутся из текста как есть.
    • Аналогичная кривая для популярности имён.
  • Распределение размера населённых пунктов[3].

См. также

Примечания

Шаблон:Примечания

Литература

Шаблон:Список вероятностных распределений

  1. Шаблон:Статья
  2. Pareto, Vilfredo, Cours d’Économie Politique: Nouvelle édition par G.-H. Bousquet et G. Busino, Librairie Droz, Geneva, 1964, pages 299—345.
  3. Шаблон:Статья