Контактное число

Материал из testwiki
Версия от 01:34, 17 декабря 2024; imported>DarkCherry (Ссылки)
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

Контактное число (иногда число Ньютона[1][2], в химии соответствует координационному числу[2]) — максимальное количество n-мерных шаров единичного радиуса, которые могут одновременно касаться одного такого же шара в n-мерном евклидовом пространстве (предполагается, что шары не проникают друг в друга, то есть объём пересечения любых двух шаров равен нулю).

Следует отличать контактное число от контактного числа на решётке[3] — аналогичного параметра для плотнейшей регулярной упаковки шаров. Вычисление контактного числа в общем случае до сих пор является нерешённой математической задачей.

История

В одномерном случае не более двух отрезков единичной длины могут касаться такого же отрезка:

В двумерном случае можно интерпретировать задачу как нахождение максимального числа монет, касающихся центральной. Из рисунка видно, что разместить можно до 6 монет:

Это значит, что N(2)6. С другой стороны, каждая касающаяся окружность отсекает на центральной окружности дугу в 60°, и эти дуги не пересекаются, значит N(2)360/60=6. Видно, что в данном случае оценки сверху и снизу совпали и N(2)=6.

Пример расположения 12 шаров

В трёхмерном случае речь идет о шарах. Здесь также легко построить пример с 12 шарами, касающимися центрального — они расположены в вершинах икосаэдра — поэтому N(3)12. Данная нижняя оценка была известна ещё Ньютону.

Это расположение неплотное, между шарами будут довольно заметные зазоры. Оценка сверху стала причиной известного спора между Ньютоном и Д. Грегори в 1694 году. Ньютон утверждал, что N(3)=12, а Грегори возражал, что может быть можно расположить и 13 шаров. Он провёл вычисления и выяснил, что площадь центрального шара более чем в 14 раз больше площади проекции каждого из касающихся шаров, так что N(3)14. Если позволить менять радиусы шаров на 2 %, то оказывается возможным прислонить до 14 шаров.

Лишь в 1953 году в статье Шютте и ван дер Вардена[4] была окончательно установлена правота Ньютона, несмотря на отсутствие у того строгого доказательства.

В четырёхмерном случае представить себе шары достаточно сложно. Размещение 24 четырёхмерных сфер вокруг центральной было известно давно, оно столь же регулярное, как и в двумерном случае, и решает одновременно и задачу о контактном числе на решётке. Это то же размещение, что у целых единичных кватернионов.

В явном виде это расположение было указано в 1900 году Госсетом[5]. Ещё раньше оно было найдено (в эквивалентной задаче) в 1872 году российскими математиками Коркиным и Золотарёвым[6][7]. Это расположение дало оценку снизу N(4)24.

Попытки оценить это число сверху привели к развитию тонких методов теории функций, но не давали точного результата. Сначала удалось доказать, что N(4)26, потом удалось снизить верхнюю границу до N(4)25. И наконец в 2003 году российскому математику Олегу Мусину удалось доказать, что N(4)=24[8].

В размерностях 8 и 24 точная оценка была получена в 1970-е годы[9][10]. Доказательство основано на равенстве контактного числа и контактного числа на решётке в этих размерностях: решётки E8 (для размерности 8) и решётки Лича (для размерности 24).

Известные значения и оценки

Известные оценки контактных чисел в n-мерном пространстве.

В настоящее время точные значения контактных чисел известны только для n4, а также для n=8 и n=24. Для некоторых других значений известны верхние и нижние оценки.

Размерность Нижняя граница Верхняя граница
1 2
2 6
3 12
4 24[8]
5 40 44[11]
6 72 78[11]
7 126 134[11]
8 240
9 306 364[11]
10 510[12] 554
11 592[12] 870
12 840 1 357
13 1 154[13] 2 069
14 1 932[12] 3 183
15 2 564 4 866
16 4 320 7 355
17 5 346 11 072
18 7 398 16 572[11]
19 10 688 24 812[11]
20 17 400 36 764[11]
21 27 720 54 584[11]
22 49 896 82 340
23 93 150 124 416
24 196 560

Приложения

Задача имеет практическое применение в теории кодирования. В 1948 году Клод Шеннон опубликовал работу по теории информации, показывающую возможность передачи данных без ошибок в зашумленных каналах связи используя координаты упаковки единичных сфер в n-мерном пространстве. См. также Расстояние Хэмминга.

См. также

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Задачи упаковки