Бикластеризация

Материал из testwiki
Перейти к навигации Перейти к поиску

Бикластеризация, блоковая кластеризация,[1] сокластеризация, также двухмодальная кластеризация [2] [3] — методика data mining, которая позволяет одновременную кластеризацию строк и столбцов матрицы. Термин был впервые предложен Б.Г. Миркиным,[4] хотя сам метод был придуман гораздо раньше[4] (J.A. Hartigan[5]).

Принимая на вход набор m строк в n столбцах (матрица размера m×n), алгоритм бикластеризации генерирует бикластеры — подмножество строк, которые проявляют похожее поведение через подмножество столбцов.

История развития

Бикластеризация была впервые представлена J. A. Hartigan в 1972 году[6]. Термин бикластеризация был позднее введен Б.Г. Миркиным[4]. Этот алгоритм не был обобщён до 2000 года, когда Y. Cheng и G. M. Church предложили алгоритм бикластеризации, основанный на дисперсии, и применили его к биологическим данным по экспрессии генов[7]. Их статья до сих пор остаётся одним из наиболее важных литературных материалов в области бикластеризации экспрессии генов.

В 2001 и 2003 годах I. S. Dhillon предложил два алгоритма, в которых бикластеризация применяется для файлов и слов. Одна из версий была основана на разделении двудольных спектральных графов[8]. Вторая была основана на теории информации. Dhillon допустил, что потеря взаимной информации при бикластеризации равна KL (расстояние Кульбака-Лейблера) между P и Q. P означает распределение файлов и характеристических слов перед бикластеризацией. Q, в свою очередь, — распределение после кластеризации. KL-расстояние необходимо в качестве меры отличий между двумя случайными распределениями. KL = 0, когда два распределения одинаковы, и возрастает, если возрастает отличие[9]. Таким образом, целью алгоритма являлась минимизация KL-расстояния между P и Q. В 2004 A. Banerjee использовал взвешенное расстояние Брегмана вместо KL-расстояния, чтобы разработать алгоритм бикластеризации, подходящий для любого типа матрицы, в отличие от KL алгоритма[10].

С целью кластеризовать более чем два типа объектов Bekkerman в 2005 году расширил взаимную информацию в теореме Dhillon от одной пары до множества пар.

Сложность задачи

Сложность задачи бикластеризации зависит от конкретной формулировки, в особенности от функции, используемой для оценки качества полученного бикластера. Наиболее интересные варианты этих задач являются NP-полными и требуют больших вычислительных мощностей или использования эвристических подходов[11][12].

Типы бикластеров

Различные алгоритмы бикластеризации имеют различные определения бикластера.[12]

Основные типы:

  1. Бикластер с постоянными значениями (a),
  2. Бикластер с постоянными значениями по строкам (b) или столбцам (c),
  3. Бикластер со сцепленными значениями (d, e).

На основе обзора С. Мадейры и А. Оливейры[12] и некоторых других была так же предложена таксономия методов бикластеризации на основе типов бикластеров, их структуры, характера порождения, стратегии поиска и типов значений данных.[13] [14]

См. также

Примечания

Шаблон:Примечания

Литература

Ссылки