Гипотеза Гильбрайта

Материал из testwiki
Перейти к навигации Перейти к поиску

Гипотеза Гильбрайта — гипотеза в теории чисел, утверждающая, что если взять последовательность простых чисел и итерационно применять к ней разностный оператор, то получаемые на каждом шаге последовательности всегда будут начинаться на 1. Гипотеза получила известность после того, как была опубликована в 1958 году Норманом Гильбрайтом[1]. Однако, ещё в 1878 году Шаблон:Нп1 публиковал предполагаемое доказательство этой же гипотезы, которое, как затем выяснилось, было ошибочным[1].

Истоки гипотезы

Рассмотрим последовательность простых чисел

2,3,5,7,11,13,17,19,23,29,31,

Вычислим абсолютные значения разностей между каждой парой соседних членов и выпишем полученную последовательность:

1,2,2,4,2,4,2,4,6,2,

Продолжая выполнять данную операцию для каждой новой полученной последовательности, будем получать следующее:

1,0,2,2,2,2,2,2,4,
1,2,0,0,0,0,0,2,
1,2,0,0,0,0,2,
1,2,0,0,0,2,
1,2,0,0,2,

Видим, что первый элемент каждой последовательности равен 1.

Гипотеза

Сформулировать гипотезу Гильбрайта проще, если ввести некоторые обозначения для последовательностей из предыдущей секции. обозначим {pn} упорядоченную последовательность простых чисел pn, и определим члены последовательности {dn} как

dn=pn+1pn,

где n — натуральное. Считаем также, что {dn}={dn1} и для каждого натурального k>1, определим последовательность {dnk} формулой

dnk=|dn+1k1dnk1|.

(здесь k — это не степень, а верхний индекс)

Гипотеза Гильбрайта утверждает, что каждый член последовательности ak=d1k равен 1.

Проверка и попытки доказательства

На 2011 год не было правильного опубликованного доказательства гипотезы. Как уже говорилось во введении, Шаблон:Нп1 привёл доказательство утверждения, однако позже было показано, что оно ошибочно. Шаблон:Нп1 в 1993 проверил, что d1k равно 1 для всех kn=3,41011[2], но гипотеза остается открытой проблемой. Вместо вычисления всех n рядов таблицы, Одлыжко вычислил 635 рядов и установил, что 635-й ряд начинается с 1 и далее вплоть до n-го элемента состоит только из чисел 0 и 2. Отсюда следует, что все последующие n рядов начинаются с единицы.

Последовательности для простых чисел до 150

В таблице ниже нули выделены зелёным цветом, единицы — красным, двойки — синим, прочие числа — серым. Суть гипотезы состоит в том, что серая область никогда не достигнет красного столбца из единиц.

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149
1 2 2 4 2 4 2 4 6 2 6 4 2 4 6 6 2 6 4 2 6 4 6 8 4 2 4 2 4 14 4 6 2 10
1 0 2 2 2 2 2 2 4 4 2 2 2 2 0 4 4 2 2 4 2 2 2 4 2 2 2 2 10 10 2 4 8
1 2 0 0 0 0 0 2 0 2 0 0 0 2 4 0 2 0 2 2 0 0 2 2 0 0 0 8 0 8 2 4
1 2 0 0 0 0 2 2 2 2 0 0 2 2 4 2 2 2 0 2 0 2 0 2 0 0 8 8 8 6 2
1 2 0 0 0 2 0 0 0 2 0 2 0 2 2 0 0 2 2 2 2 2 2 2 0 8 0 0 2 4
1 2 0 0 2 2 0 0 2 2 2 2 2 0 2 0 2 0 0 0 0 0 0 2 8 8 0 2 2
1 2 0 2 0 2 0 2 0 0 0 0 2 2 2 2 2 0 0 0 0 0 2 6 0 8 2 0
1 2 2 2 2 2 2 2 0 0 0 2 0 0 0 0 2 0 0 0 0 2 4 6 8 6 2
1 0 0 0 0 0 0 2 0 0 2 2 0 0 0 2 2 0 0 0 2 2 2 2 2 4
1 0 0 0 0 0 2 2 0 2 0 2 0 0 2 0 2 0 0 2 0 0 0 0 2
1 0 0 0 0 2 0 2 2 2 2 2 0 2 2 2 2 0 2 2 0 0 0 2
1 0 0 0 2 2 2 0 0 0 0 2 2 0 0 0 2 2 0 2 0 0 2
1 0 0 2 0 0 2 0 0 0 2 0 2 0 0 2 0 2 2 2 0 2
1 0 2 2 0 2 2 0 0 2 2 2 2 0 2 2 2 0 0 2 2
1 2 0 2 2 0 2 0 2 0 0 0 2 2 0 0 2 0 2 0
1 2 2 0 2 2 2 2 2 0 0 2 0 2 0 2 2 2 2
1 0 2 2 0 0 0 0 2 0 2 2 2 2 2 0 0 0
1 2 0 2 0 0 0 2 2 2 0 0 0 0 2 0 0
1 2 2 2 0 0 2 0 0 2 0 0 0 2 2 0
1 0 0 2 0 2 2 0 2 2 0 0 2 0 2
1 0 2 2 2 0 2 2 0 2 0 2 2 2
1 2 0 0 2 2 0 2 2 2 2 0 0
1 2 0 2 0 2 2 0 0 0 2 0
1 2 2 2 2 0 2 0 0 2 2
1 0 0 0 2 2 2 0 2 0
1 0 0 2 0 0 2 2 2
1 0 2 2 0 2 0 0
1 2 0 2 2 2 0
1 2 2 0 0 2
1 0 2 0 2
1 2 2 2
1 0 0
1 0
1

См. также

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:Гипотезы о простых числах