Граф Паппа

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Граф

В теории графов графом Паппа называется двудольный 3-регулярный неориентированный граф с 18 вершинами и 27 рёбрами, являющийся графом Леви конфигурации Паппа[1]. Он назван в честь Паппа Александрийского, математика Древней Греции, который верил, что доказал «теорему о шестиугольнике», в которой описывал конфигурацию Паппа. Все кубические дистанционно-регулярные графы известны. Граф Паппа — один из тринадцати таких графов[2].

Число прямолинейных скрещиваний графа Паппа равно 5, и этот граф является наименьшим кубическим графом с таким числом скрещиваний (Шаблон:OEIS). Граф имеет обхват 6, диаметр 4, радиус 4, хроматическое число 2, хроматический индекс 3, а также является и вершинно 3-связным, и рёберно 3-связным.

Хроматический многочлен графа Паппа равен (x1)x(x1626x15+325x142600x13+14950x1265762x11+229852x10653966x9+1537363x83008720x7+4904386x66609926x5+7238770x46236975x3+3989074x21690406x+356509).

Имя «граф Паппа» используется также для близкого графа с девятью вершинами[3], по вершине для каждой точки конфигурации Паппа с рёбрами для каждой пары точек, находящихся на одной линии. Этот граф 6-регулярен и является дополнением объединения трёх не связанных друг с другом треугольных графов. Первый граф Паппа можно вложить в тор, получая при этом Шаблон:Не переведено 5 с девятью шестиугольными гранями. Второй граф образует при таком вложении правильную карту с 18 треугольными гранями.

Алгебраические свойства

Группа автоморфизмов графа Паппа — это группа с порядком 216. Она действует транзитивно на вершины и рёбра графа. Таким образом, граф Паппа является симметричным. У него есть автоморфизмы, переводящие любую вершину в любую другую и любое ребро в любое другое ребро. В списке Фостера граф Папа обозначен как F018A и является единственным кубическим симметричным графом с 18 вершинами[4][5].

Характеристический многочлен графа Паппа равен (x3)x4(x+3)(x23)6. Это единственный граф с таким характеристическим полиномом, так что в данном случае граф определяется своим спектром.

Галерея

Примечания

Шаблон:Примечания

Шаблон:Rq

  1. Шаблон:MathWorld
  2. Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance — Regular Graphs. New York: Springer—Verlag, 1989.
  3. Шаблон:Книга
  4. Royle, G. «Cubic Symmetric Graphs (The Foster Census).» Шаблон:Webarchive
  5. Шаблон:Не переведено 5 and Dobcsányi, P. «Trivalent Symmetric Graphs Up to 768 Vertices.» J. Combin. Math. Combin. Comput. 40, 41—63, 2002.