Дисперсия света

Материал из testwiki
Перейти к навигации Перейти к поиску
Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона)

Шаблон:Другие значения Диспе́рсия све́та (разложение света; светорассеяние[1]) — это совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, что то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Исааком Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее[2].

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Свойства и проявления

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и, следовательно, цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна,
  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.

Однако в некоторых веществах (например, в парах иода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Белый свет разлагается в спектр в результате прохождения через дифракционную решётку или отражения от неё (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видеообъективов.

Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:

n=a+b/λ2+c/λ4,

где λ — длина волны в вакууме; a, b, c — постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.

Дисперсия света в природе и искусстве

Благодаря дисперсии можно наблюдать разные цвета
  • Радуга, чьи цвета обусловлены дисперсией, — один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться и/или подчёркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме — довольно распространённая тема в изобразительном искусстве. Например, на обложке альбома The Dark Side of the Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.


Обобщенная формулировка высоких порядков дисперсии - оптика Лаха-Лагерра

Описание хроматической дисперсии с помощью пертурбативного подхода через коэффициенты Тейлора подходит для задач оптимизации, где необходимо сбалансировать дисперсию от нескольких различных систем. Например, в лазерных усилителях, импульсы сначала растягиваются во времени, чтобы избежать оптического повреждения кристаллов. Затем, в процессе усиления энергии, импульсы накапливают неизбежную линейную и нелинейную фазу, проходя через различные материалы. Наконец, импульсы сжимаются в различных типах компрессоров. Для того чтобы сбросить любые остаточные высшие порядки в накопленной фазе, отдельные порядки дисперсии обычно измеряются и балансируются. Для однородных систем такое пертурбативное описание часто не требуется (например, для распространения импульса в волноводах или оптических волокнах). Дисперсионные порядки сводятся к аналитическим уравнениям, которые идентичны преобразованиям типа Лаха-Лагера[3][4].

Порядки дисперсии определяются разложением Тейлора фазы или волнового вектора.

φ(ω)=φ |ω0+ φω|ω0(ωω0)+12 2φω2|ω0(ωω0)2 ++1p! pφωp|ω0(ωω0)p+

k(ω)=k |ω0+ kω|ω0(ωω0)+12 2kω2|ω0(ωω0)2 ++1p! pkωp|ω0(ωω0)p+

Производные дисперсии для волнового вектора k(ω)=ωcn(ω) и фазы φ(ω)=ωc𝑂𝑃(ω) могут быть выражены как:

pωpk(ω)=1c(pp1ωp1n(ω)+ωpωpn(ω)) , pωpφ(ω)=1c(pp1ωp1𝑂𝑃(ω)+ωpωp𝑂𝑃(ω))(1)

Производные любой дифференцируемой функции f(ω|λ) в пространстве длин волн или частот определяются через преобразование Лаха как:

pωpf(ω)=(1)p(λ2πc)pm=0p𝒜(p,m)λmmλmf(λ) , pλpf(λ)=(1)p(ω2πc)pm=0p𝒜(p,m)ωmmωmf(ω)(2)

Матричные элементы преобразования являются коэффициентами Лаха: 𝒜(p,m)=p!(pm)!m!(p1)!(m1)!

Записанное для дисперсии групповой скорости GDD, приведенное выше выражение утверждает, что постоянная длины волны GGD будет иметь нулевые высшие порядки. Высшие порядки, полученные из GDD, являются:

pωpGDD(ω)=(1)p(λ2πc)pm=0p𝒜(p,m)λmmλmGDD(λ)

Подстановка уравнения (2), выраженного для показателя преломления n или оптического пути OP, в уравнение (1) приводит к аналитическим выражениям для порядков дисперсии. В общем случае дисперсия pth порядка POD является преобразованием типа Лагерра отрицательного второго порядка:

POD=dpφ(ω)dωp=(1)p(λ2πc)(p1)m=0p(𝓅,𝓂)(λ)mdmOP(λ)dλm , POD=dpk(ω)dωp=(1)p(λ2πc)(p1)m=0p(𝓅,𝓂)(λ)mdmn(λ)dλm

Матричные элементы преобразований представляют собой беззнаковые коэффициенты Лагерра порядка минус 2 и имеют вид: (p,m)=p!(pm)!m!(p2)!(m2)!

Первые десять порядков дисперсии, записанные в явном виде для волнового вектора:

𝐺𝐷=ωk(ω)=1c(n(ω)+ωn(ω)ω)=1c(n(λ)λn(λ)λ)=vgr1

Групповой показатель преломления ng определяется как: ng=cvgr1.

𝐺𝐷𝐷=2ω2k(ω)=1c(2n(ω)ω+ω2n(ω)ω2)=1c(λ2πc)(λ22n(λ)λ2)

𝑇𝑂𝐷=3ω3k(ω)=1c(32n(ω)ω2+ω3n(ω)ω3)=1c(λ2πc)2(3λ22n(λ)λ2+λ33n(λ)λ3)

𝐹𝑂𝐷=4ω4k(ω)=1c(43n(ω)ω3+ω4n(ω)ω4)=1c(λ2πc)3(12λ22n(λ)λ2+8λ33n(λ)λ3+λ44n(λ)λ4)

𝐹𝑖𝑂𝐷=5ω5k(ω)=1c(54n(ω)ω4+ω5n(ω)ω5)=1c(λ2πc)4(60λ22n(λ)λ2+60λ33n(λ)λ3+15λ44n(λ)λ4+λ55n(λ)λ5)

𝑆𝑖𝑂𝐷=6ω6k(ω)=1c(65n(ω)ω5+ω6n(ω)ω6)=1c(λ2πc)5(360λ22n(λ)λ2+480λ33n(λ)λ3+180λ44n(λ)λ4+24λ55n(λ)λ5+λ66n(λ)λ6)

𝑆𝑒𝑂𝐷=7ω7k(ω)=1c(76n(ω)ω6+ω7n(ω)ω7)=1c(λ2πc)6(2520λ22n(λ)λ2+4200λ33n(λ)λ3+2100λ44n(λ)λ4+420λ55n(λ)λ5+35λ66n(λ)λ6+λ77n(λ)λ7)

𝐸𝑂𝐷=8ω8k(ω)=1c(87n(ω)ω7+ω8n(ω)ω8)=1c(λ2πc)7(20160λ22n(λ)λ2+40320λ33n(λ)λ3+25200λ44n(λ)λ4+6720λ55n(λ)λ5+840λ66n(λ)λ6++48λ77n(λ)λ7+λ88n(λ)λ8)

𝑁𝑂𝐷=9ω9k(ω)=1c(98n(ω)ω8+ω9n(ω)ω9)=1c(λ2πc)8(181440λ22n(λ)λ2+423360λ33n(λ)λ3+317520λ44n(λ)λ4+105840λ55n(λ)λ5+17640λ66n(λ)λ6++1512λ77n(λ)λ7+63λ88n(λ)λ8+λ99n(λ)λ9)

𝑇𝑒𝑂𝐷=10ω10k(ω)=1c(109n(ω)ω9+ω10n(ω)ω10)=1c(λ2πc)9(1814400λ22n(λ)λ2+4838400λ33n(λ)λ3+4233600λ44n(λ)λ4+1693440λ55n(λ)λ5++352800λ66n(λ)λ6+40320λ77n(λ)λ7+2520λ88n(λ)λ8+80λ99n(λ)λ9+λ1010n(λ)λ10)

В явном виде, записанные для фазы φ, первые десять порядков дисперсии могут быть выражены как функция длины волны с помощью преобразований Лаха (уравнение (2)) в виде:

pωpf(ω)=(1)p(λ2πc)pm=0p𝒜(p,m)λmmλmf(λ) , pλpf(λ)=(1)p(ω2πc)pm=0p𝒜(p,m)ωmmωmf(ω)


φ(ω)ω=(2πcω2)φ(ω)λ=(λ22πc)φ(λ)λ

2φ(ω)ω2=ω(φ(ω)ω)=(λ2πc)2(2λφ(λ)λ+λ22φ(λ)λ2)

3φ(ω)ω3=(λ2πc)3(6λφ(λ)λ+6λ22φ(λ)λ2+λ33φ(λ)λ3)

4φ(ω)ω4=(λ2πc)4(24λφ(λ)λ+36λ22φ(λ)λ2+12λ33φ(λ)λ3+λ44φ(λ)λ4)

5φ(ω)ω5=(λ2πc)5(120λφ(λ)λ+240λ22φ(λ)λ2+120λ33φ(λ)λ3+20λ44φ(λ)λ4+λ55φ(λ)λ5)

6φ(ω)ω6=(λ2πc)6(720λφ(λ)λ+1800λ22φ(λ)λ2+1200λ33φ(λ)λ3+300λ44φ(λ)λ4+30λ55φ(λ)λ5 +λ66φ(λ)λ6)

7φ(ω)ω7=(λ2πc)7(5040λφ(λ)λ+15120λ22φ(λ)λ2+12600λ33φ(λ)λ3+4200λ44φ(λ)λ4+630λ55φ(λ)λ5+42λ66φ(λ)λ6+λ77φ(λ)λ7)

8φ(ω)ω8=(λ2πc)8(40320λφ(λ)λ+141120λ22φ(λ)λ2+141120λ33φ(λ)λ3+58800λ44φ(λ)λ4+11760λ55φ(λ)λ5+1176λ66φ(λ)λ6+56λ77φ(λ)λ7++λ88φ(λ)λ8) 9φ(ω)ω9=(λ2πc)9(362880λφ(λ)λ+1451520λ22φ(λ)λ2+1693440λ33φ(λ)λ3+846720λ44φ(λ)λ4+211680λ55φ(λ)λ5+28224λ66φ(λ)λ6++2016λ77φ(λ)λ7+72λ88φ(λ)λ8+λ99φ(λ)λ9)

10φ(ω)ω10=(λ2πc)10(3628800λφ(λ)λ+16329600λ22φ(λ)λ2+21772800λ33φ(λ)λ3+12700800λ44φ(λ)λ4+3810240λ55φ(λ)λ5+635040λ66φ(λ)λ6++60480λ77φ(λ)λ7+3240λ88φ(λ)λ8+90λ99φ(λ)λ9+λ1010φ(λ)λ10)

См. также

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:Навигация

Шаблон:ВС Шаблон:Rq