Задача о принадлежности точки многоугольнику

Материал из testwiki
Перейти к навигации Перейти к поиску

В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.

Многоугольник может быть как выпуклым, так и невыпуклым. Обычно предполагается, что многоугольник простой, то есть без самопересечений; но задачу рассматривают и для не-простых многоугольников. В последнем случае разные способы определения принадлежности точки многоугольнику могут привести к разным результатам. Различают алгоритмы без предварительной обработки; и алгоритмы с предварительной обработкой, в ходе которой создаются некоторые структуры данных, позволяющие в дальнейшем быстрее отвечать на множество запросов о принадлежности разных точек одному и тому же многоугольнику.

Метод трассировки луча

Учёт числа пересечений

Методы работают по-разному для многоугольников с самопересекающейся границей. Слева: even-odd rule. Справа: nonzero winding rule.

Один из стандартных методов определения принадлежности точки произвольному простому многоугольнику заключается в следующем. Выпустим луч из данной точки в произвольном направлении (например в положительном направлении горизонтальной оси), и посчитаем сколько раз луч пересекает рёбра многоугольника. Для этого достаточно пройтись в цикле по рёбрам многоугольника и определить, пересекает ли луч каждое ребро. Если число пересечений нечётно, то объявляется, что точка лежит внутри многоугольника, если чётно — то снаружи. Это основано на том простом наблюдении, что при движении по лучу с каждым пересечением границы точка попеременно оказывается то внутри, то снаружи многоугольника. Алгоритм известен под такими названиями, как Шаблон:Lang-en2 или Шаблон:Lang-en2.

В алгоритме возникает затруднение в вырожденном случае, когда луч пересекает вершину многоугольника. Один из приёмов для его преодоления заключается в том, чтобы считать, что такие вершины многоугольника лежат на бесконечно малую величину выше (или ниже) прямой луча, и стало быть пересечения на самом деле и нет.[1] Таким образом, пересечение луча с ребром засчитывается, если один из концов ребра лежит строго ниже луча, а другой конец — выше или лежит на луче.

Алгоритм работает за время O(N) для N-угольника.

Учёт числа оборотов

Кривая делает два оборота вокруг данной точки.

Рассмотрим число оборотов, которое делает ориентированная граница многоугольника вокруг данной точки P. В алгебраической топологии это число называется индексом точки относительно кривой.[2] Оно может быть вычислено следующим образом. Как и раньше, выпустим луч из P в произвольном направлении и рассмотрим рёбра, которые он пересекает. Каждому пересечению присвоим число +1 или -1, в зависимости от того, как ребро пересекает луч — по часовой (слева направо) или против часовой стрелки (справа налево). Эти два случая можно различить по знаку скалярного произведения между направляющим вектором ребра и нормалью к направляющему вектору луча.[3] Сумма полученных величин и есть индекс точки относительно кривой. Сумма будет положительной или отрицательной, в зависимости от ориентации границы. Если она не равна нулю, то будем считать, что точка лежит внутри многоугольника, иначе — снаружи.

Такой алгоритм известен под названием Шаблон:Lang-en2.[3]

Для простых многоугольников этот метод работает так же, как и метод, основанный на подсчёте числа пересечений. Разница между ними проявляется при рассмотрении многоугольников с самопересекающейся границей.

Метод суммирования углов

Можно определить, что точка Шаблон:Math находится внутри многоугольника с вершинами Шаблон:Math, вычислив сумму:

i=1nϕi,

где ϕi — угол (в радианах и со знаком) между лучами Шаблон:Math и Шаблон:Math, то есть:

ϕi=arccos(PVi1PVi|PVi1||PVi|)sign(det(PVi1PVi)).

Можно доказать, что эта сумма есть не что иное, как Шаблон:Lang-en2 точки Шаблон:Math относительно границы многоугольника, с точностью до константного множителя 2π. Поэтому можно считать, что точка лежит снаружи многоугольника, если сумма равна нулю (или достаточно близка к нему, если используется приближённая арифметика). Однако данный метод весьма непрактичен, так как требует вычисления дорогостоящих операций для каждого ребра (обратных тригонометрических функций, квадратных корней), и был даже назван «худшим в мире алгоритмом» для данной задачи[1].

К. Вейлером был предложен практичный вариант этого метода, избегающий дорогостоящих операций и приближенных вычислений.[4] Было показано, что сумму углов можно вычислить, используя лишь операцию классификации точки многоугольника по квадрантам относительно точки Шаблон:Math. Алгоритм Вейлера и некоторые улучшения к нему описываются в[5].

Алгоритмы c предобработкой

Выпуклые и звёздные многоугольники

Принадлежность точки выпуклому или звёздному N-угольнику может быть определена при помощи двоичного поиска за время O(log N), при затрате O(N) памяти и O(N) времени на предварительную обработку.[6]

Произвольный многоугольник

Задачу о принадлежности точки произвольному простому многоугольнику можно рассматривать как частный случай Шаблон:Iw в планарном подразбиении. Для N-угольника эта задача может быть решена за время O(log2 N) с использованием O(N) памяти и O(N log N) времени на предобработку.[7]

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:Wikibooks

Шаблон:Многоугольники

  1. 1,0 1,1 Eric Haines. Point in Polygon Strategies Шаблон:Wayback
  2. Может переводиться на русский язык как «индекс кривой относительно точки», «число кручения», «число намоток», «винтовое число» и тому подобное.
  3. 3,0 3,1 Foley J. D., et al. Computer Graphics: Principles and Practice. Addison-Wesley. 1990. P. 965.
  4. K. Weiler. An incremental angle point in polygon test, in: P. Heckbert (Ed.), Graphic Gems IV, Academic Press, Boston, MA, 1994, pp. 16—23.
  5. Шаблон:Статья
  6. Препарата, Шеймос. Стр. 60-61.
  7. Препарата, Шеймос. Стр. 74. Теорема 2.6.