Изотопы плутония

Материал из testwiki
Перейти к навигации Перейти к поиску

Изото́пы плутония — разновидности атомовядер) химического элемента плутония, имеющие разное содержание нейтронов в ядре. Плутоний не имеет стабильных изотопов. Следы плутония-244 были обнаружены в природе. Самым долгоживущим изотопом является 244Pu с периодом полураспада 80 млн лет.

Из изотопов плутония на данный момент известно о существовании его 20 нуклидов с массовыми числами 228—247[1]. Только 4 из них нашли своё применение[2]. Свойства изотопов имеют некоторую характерную особенность, по которой можно судить об их дальнейшем изучении — чётные изотопы имеют бо́льшие периоды полураспада, чем нечётные (однако данное предположение относится только к менее важным его нуклидам).

Министерство энергетики США делит смеси плутония на три вида[3]:

  1. оружейный плутоний (содержащий не менее 94 % изотопа 239Pu)
  2. топливный плутоний (от 7 до 18 % 240Pu) и
  3. реакторный плутоний (содержание 240Pu более 18 %)

Термин «сверхчистый плутоний» используется для описания смеси изотопов плутония, в которых содержатся 2—3 процента 240Pu[3].

Всего два изотопа этого элемента (239Pu и 241Pu) являются более способными к ядерному делению, нежели остальные; более того, это единственные изотопы, которые подвергаются ядерному делению при действии тепловых нейтронов[3]. Среди продуктов взрыва термоядерных бомб обнаружены также 247Рu и 255Рu[4], периоды полураспада которых несоизмеримо малы.

Таблица изотопов плутония

Символ
нуклида
Z(p) N(n) Масса изотопа[5]
(а. е. м.)
Период
полураспада
[6]
(T1/2)
Канал распада Продукт распада Спин и чётность
ядра[6]
Распространённость
изотопа в природе
Энергия возбуждения
227Pu 94 133 0,78 с[7]
228Pu 94 134 228,03874(3) 1,1(+20−5) с α (99,9%) 224U 0+
β+ (0,1%) 228Np
229Pu 94 135 229,04015(6) 120(50) с α 225U 3/2+#
230Pu 94 136 230,039650(16) 1,70(17)мин α 226U 0+
β+ (редко) 230Np
231Pu 94 137 231,041101(28) 8,6(5)мин β+ 231Np 3/2+#
α (редко) 227U
232Pu 94 138 232,041187(19) 33,7(5)мин ЭЗ (89%) 232Np 0+
α (11%) 228U
233Pu 94 139 233,04300(5) 20,9(4)мин β+ (99,88%) 233Np 5/2+#
α (0,12%) 229U
234Pu 94 140 234,043317(7) 8,8(1) ч ЭЗ (94%) 234Np 0+
α (6%) 230U
235Pu 94 141 235,045286(22) 25,3(5)мин β+ (99,99%) 235Np (5/2+)
α (0,0027%) 231U
236Pu 94 142 236,0460580(24) 2,858(8) года α 232U 0+
СД (1,37⋅10−7%) (разные)
КР (2⋅10−12%) 208Pb
28Mg
β+β+ (редко) 236U
237Pu 94 143 237,0484097(24) 45,2(1) сут ЭЗ 237Np 7/2−
α (0,0042%) 233U
237m1Pu 145,544(10)2 кэВ 180(20) мс ИП 237Pu 1/2+
237m2Pu 2900(250) кэВ 1,1(1) мкс
238Pu 94 144 238,0495599(20) 87,7(1) лет α 234U 0+
СД (1,9⋅10−7%) (разные)
КР (1,4⋅10−14%) 206Hg
32Si
КР (6⋅10−15%) 180Yb
30Mg
28Mg
239Pu 94 145 239,0521634(20) 2,411(3)⋅104 лет α 235U 1/2+
СД (3,1⋅10−10%) (разные)
239m1Pu 391,584(3) кэВ 193(4)нс 7/2−
239m2Pu 3100(200) кэВ 7,5(10) мкс (5/2+)
240Pu 94 146 240,0538135(20) 6,561(7)⋅103 лет α 236U 0+
СД (5,7⋅10−6%) (разные)
КР (1,3⋅10−13%) 206Hg
34Si
241Pu 94 147 241,0568515(20) 14,290(6) лет β (99,99%) 241Am 5/2+
α (0,00245%) 237U
СД (2,4⋅10−14%) (разные)
241m1Pu 161,6(1) кэВ 0,88(5) мкс 1/2+
241m2Pu 2200(200) кэВ 21(3) мкс
242Pu 94 148 242,0587426(20) 3,75(2)⋅105 лет α 238U 0+
СД (5,5⋅10−4%) (разные)
243Pu 94 149 243,062003(3) 4,956(3) ч β 243Am 7/2+
243mPu 383,6(4) кэВ 330(30)нс (1/2+)
244Pu 94 150 244,064204(5) 8,00(9)⋅107 лет α (99,88%) 240U 0+
СД (0,123%) (разные)
ββ (7,3⋅10−9%) 244Cm
245Pu 94 151 245,067747(15) 10,5(1) ч β 245Am (9/2−)
246Pu 94 152 246,070205(16) 10,84(2) сут β 246mAm 0+
247Pu 94 153 247,07407(32)# 2,27(23) сут β 247Am 1/2+#

Шаблон:Примечания

Пояснения к таблице

  • Индексами 'm', 'n', 'p' (рядом с символом) обозначены возбужденные изомерные состояния нуклида.
  • Символами, выделенными жирным шрифтом, обозначены стабильные продукты распада. Символами, выделенными жирным курсивом, обозначены радиоактивные продукты распада, имеющие периоды полураспада, сравнимые с возрастом Земли или превосходящие его и вследствие этого присутствующие в природной смеси.
  • Значения, помеченные решёткой (#), получены не из одних лишь экспериментальных данных, а (хотя бы частично) оценены из систематических трендов у соседних нуклидов (с такими же соотношениями Шаблон:Math и Шаблон:Math). Неуверенно определённые значения спина и/или чётности заключены в скобки.
  • Погрешность приводится в виде числа в скобках, выраженного в единицах последней значащей цифры, означает одно стандартное отклонение (за исключением распространённости и стандартной атомной массы изотопа по данным ИЮПАК, для которых используется более сложное определение погрешности). Примеры: 29770,6(5) означает 29770,6 ± 0,5; 21,48(15) означает 21,48 ± 0,15; −2200,2(18) означает −2200,2 ± 1,8.


Изотопы и синтез

Методы экстракции плутония и урана.

Известны около 20 изотопов плутония, все они радиоактивны. Наиболее долгоживущие изотопы — плутоний-244, с периодом полураспада 80,8 млн лет; плутоний-242 — 372 300 лет; плутоний-239 — 24 110 лет, плутоний-240 — 6560 лет, плутоний-238 — 87 лет, плутоний-241 — 14 лет. Все остальные изотопы имеют период полураспада меньше 3 лет. Этот элемент имеет 8 метастабильных состояний, периоды полураспада этих изомеров не превышают 1 с[8].

Массовое число известных изотопов элемента варьируется от 228 до 247. Все они испытывают один или несколько типов радиоактивного распада:

Основным каналом распада наиболее лёгких изотопов плутония (с 228 по 231) является альфа-распад, хотя канал электронного захвата для них также открыт. Основным каналом распада лёгких изотопов плутония (с 232 по 235 включительно) является электронный захват, с ним конкурирует альфа-распад. Основными каналами радиоактивного распада изотопов с массовыми числами между 236 и 244 (кроме 237[9], 241[9] и 243) являются альфа-распад и (с меньшей вероятностью) спонтанное деление. Основным каналом распада изотопов плутония, массовые числа которых превосходят 244 (а также 243Pu и 241Pu), является бета-минус-распад в изотопы америция (95 протонов). Плутоний-241 является членом «вымершего» радиоактивного ряда нептуния[10][11][8].

Бета-стабильными (то есть испытывающими лишь распады с изменением массового числа) являются изотопы с массовыми числами 236, 238, 239, 240, 242, 244.

Синтез плутония

Плутоний в промышленных масштабах получается двумя путями[3]:

  1. облучением урана (см. реакцию ниже), содержащегося в ядерных реакторах;
  2. облучением в реакторах трансурановых элементов, выделенных из отработанного топлива.

После облучения в обоих случаях выполняется отделение химическими способами плутония от урана, трансурановых элементов и продуктов деления.

Плутоний-238

Шаблон:Основная статья Плутоний-238, использующийся в радиоизотопных генераторах энергии, лабораторно может синтезироваться в обменной (d, 2n)-реакции на уране-238:

238 92U + 12D   93238Np + 2 01n; 93238Np 2.117 dβ  94238Pu

В данном процессе дейтрон попадает в ядро урана-238, в результате чего образуется нептуний-238 и два нейтрона. Далее нептуний-238 испытывает бета-минус-распад в плутоний-238. Именно в этой реакции был впервые получен плутоний (1941, Сиборг). Однако она неэкономична. В промышленности плутоний-238 получают двумя путями:

  • выделением из облучённого ядерного топлива (в смеси с другими изотопами плутония, разделение которых очень дорого), поэтому чистый плутоний-238 таким методом не нарабатывается
  • с помощью нейтронного облучения в реакторах нептуния-237.

Цена одного килограмма плутония-238 составляет примерно 1 млн долларов США[12].

Плутоний-239

Шаблон:Основная статья Плутоний-239, делящийся изотоп, используемый в ядерном оружии и в ядерной энергетике, промышленно синтезируется[13] в ядерных реакторах (в том числе в энергетических как побочный продукт) с помощью следующей реакции при участии ядер урана и нейтронов с помощью бета-минус-распада и с участием изотопов нептуния как промежуточного продукта распада[14]:

238 92U + 01n γ  92239U 23.5 minβ  93239Np 2.3565 dβ  94239Pu

Нейтроны, излучаемые при делении урана-235, захватываются ураном-238 с образованием урана-239; затем через цепочку двух β-распадов образуются нептуний-239 и далее плутоний-239[15]. Сотрудники засекреченной британской группы Tube Alloys, которые занимались изучением плутония во время Второй мировой войны, предсказали существование данной реакции в 1940 г.

Тяжёлые изотопы плутония

Ядерные циклы, позволяющие получать более тяжёлые изотопы плутония.

Более тяжёлые изотопы нарабатываются в реакторах из 239Pu по цепочке последовательных нейтронных захватов, каждый из которых увеличивает массовое число нуклида на единицу.

Свойства некоторых изотопов

Изотопы плутония претерпевают радиоактивный распад, вследствие которого выделяется тепловая энергия. Разные изотопы излучают разное количество тепла. Тепловыделение обычно записывается в пересчёте на Вт/кг или мВт/кг. В случаях, когда плутоний присутствует в больших количествах и нет теплоотвода, тепловая энергия может расплавить содержащий плутоний материал.

Все изотопы плутония способны к ядерному делению (при воздействии нейтрона)[16] и излучают γ-частицы. Шаблон:-

Выделение тепла изотопами плутония[17]
Изотоп Тип распада Период полураспада
(в годах)
Тепловыделение
(Вт/кг)
Спонтанное деление
нейтроны (1/(г·с))
Комментарий
238Pu альфа в 234U 87,74 560 2600 Очень высокая температура распада. Даже в небольших количествах может привести к саморазогреву. Используется в РТГ.
239Pu альфа в 235U 24100 1,9 0,022 Основной ядерный продукт.
240Pu альфа в 236U, спонтанное деление 6560 6,8 910 Является основной примесью в плутонии-239. Высокий показатель спонтанного деления не позволяет использовать в ядерной промышленности.
241Pu бета в 241Am 14,4 4,2 0,049 Распадается до америция-241; его накопление представляет угрозу для полученных образцов.
242Pu альфа в 238U 376000 0,1 1700

Плутоний-236 был найден в плутониевой фракции, полученной из природного урана, при измерении радиоизлучения которой наблюдался пробег α-частиц, равный 4,35 см (что соответствует 5,75 МэВ). Было установлено, что данная группа относилась к изотопу 236Pu, образующемуся благодаря реакции 235U(α,3n)236Pu. Позднее было обнаружено, что возможны такие реакции, как: 237Np(a, p4n)236Pu; 237Np(α,5n)236Am → (Шаблон:Comment) 236Pu. В настоящее время его получают благодаря взаимодействию дейтрона с ядром урана-235. Изотоп образуется благодаря α-излучателю Шаблон:Nuclide2 (T½ 27 сут) и β-излучателя Шаблон:Nuclide2 (T½ 22 ч). Плутоний-236 является альфа-излучателем, способным к спонтанному делению. Скорость самопроизвольного деления составляет 5,8Шаблон:E делений на 1 г/ч, что соответствует периоду полураспада для этого процесса — 3,5Шаблон:E лет[23].

Плутоний-238 имеет интенсивность самопроизвольного деления 1,1Шаблон:E делений/(с·кг), что в 2,6 раза больше 240Pu, и очень высокую тепловую мощность: 567 Вт/кг. Изотоп обладает очень сильным альфа-излучением (при воздействии на него нейтронов[10]), которое в 283 раза сильнее 239Pu, что делает его более серьёзным источником нейтронов при реакции αn. Содержание плутония-238 редко когда превышает 1 % от общего состава плутония, однако излучение нейтронов и нагрев делают его очень неудобным для обращения[24]. Его удельная радиоактивность составляет 17,1 Ки[25].

Плутоний-239 имеет большие сечения рассеивания и поглощения, чем уран, и большее число нейтронов в расчёте на одно деление, и меньшую критическую массу[24], которая составляет 10 кг в альфа-фазе[17]. При ядерном распаде плутония-239 посредством воздействия на него нейтронами этот нуклид распадается на два осколка (примерно равные между собой более лёгкие атомы), выделяя примерно 200 МэВ энергии. Это приблизительно в 50 млн раз больше выделяемой при горении энергии (C+O2 → CO2↑). «Сгорая» в ядерном реакторе, изотоп выделяет 2Шаблон:E ккал[2]. Чистый 239Pu имеет среднюю величину испускания нейтронов от спонтанного деления примерно 30 нейтронов/с·кг (примерно 10 делений в секунду на килограмм). Тепловая мощность составляет 1,92 Вт/кг (для сравнения: теплота обмена веществ у взрослого человека составляет меньшую тепловую мощность), что делает его тёплым на ощупь. Удельная активность равна 61,5 мКи/г[24].

Плутоний-240 является основным изотопом, загрязняющим оружейный 239Pu. Уровень его содержания главным образом важен из-за интенсивности спонтанного деления, которая составляет 415 000 делений/с·кг, но испускается примерно 1Шаблон:E нейтронов/(с·кг), так как каждое деление рождает приблизительно 2,2 нейтрона, что примерно в 30 000 раз больше, чем у 239Pu. Тепловой выход больше, чем у плутония-239 и составляет 7,1 Вт/кг, что обостряет проблему перегрева. Удельная активность равна 227 мКи/г[24].

Плутоний-241 имеет низкий нейтронный фон и умеренную тепловую мощность и потому непосредственно не влияет на удобство применения плутония (Тепловая мощность равна 3,4 Вт/кг). Однако он с периодом полураспада 14 лет превращается в америций-241, который плохо делится и обладает большой тепловой мощностью, ухудшая качество оружейного плутония. Таким образом, плутоний-241 влияет на старение оружейного плутония. Удельная активность — 106 Ки/г[24].

Интенсивность испускания нейтронов плутония-242 составляет 840 000 делений/(с·кг) (вдвое выше 240Pu), плохо подвержен ядерному делению. При заметной концентрации серьёзно увеличивает требуемую критическую массу и нейтронный фон. Имея большую продолжительность жизни и маленькое сечение захвата, нуклид накапливается в переработанном реакторном топливе. Удельная активность составляет 4 мКи/г[24].

Примечания

Шаблон:Примечания Шаблон:Список изотопов

  1. Шаблон:Cite web
  2. 2,0 2,1 Шаблон:Книга
  3. 3,0 3,1 3,2 3,3 Шаблон:Книга
  4. Шаблон:Из
  5. Данные приведены по Шаблон:Справочник:AME2003
  6. 6,0 6,1 Данные приведены по Шаблон:Справочник:Nubase2003
  7. https://journals.aps.org/prc/abstract/10.1103/PhysRevC.110.044302
  8. 8,0 8,1 Шаблон:Cite web
  9. 9,0 9,1 У плутония-237 основным каналом распада является электронный захват, однако обнаружен также менее вероятный канал альфа-распада. У плутония-241 основным каналом распада является бета-минус-распад, однако обнаружены также менее вероятные каналы альфа-распада и спонтанного деления.
  10. 10,0 10,1 Шаблон:Книга
  11. Шаблон:Книга
  12. Шаблон:Cite news
  13. Шаблон:Книга
  14. Шаблон:Книга
  15. Шаблон:Книга
  16. Шаблон:Книга
  17. 17,0 17,1 Шаблон:Cite web
  18. 18,0 18,1 18,2 18,3 Шаблон:Cite web
  19. Шаблон:Cite web
  20. Шаблон:Cite web
  21. 21,0 21,1 Шаблон:Cite web
  22. 22,0 22,1 Шаблон:Статья
  23. Шаблон:Книга
  24. 24,0 24,1 24,2 24,3 24,4 24,5 Шаблон:Cite web
  25. Шаблон:Cite web