Магнитооптический эффект Керра

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:О

Эффект Керра, или магнитооптический эффект Керра, — [1]магнитооптический эффект, заключающийся в том, что при отражении линейно поляризованного света от поверхности намагниченного материала наблюдается вращение плоскости поляризации света, а свет становится эллиптически поляризован.

Линейные по намагниченности эффекты, проявляющиеся при отражении света от поверхности намагниченного материала, объединяются общим названием — магнитооптические эффекты Керра. Различают три вида эффектов Керра в зависимости от взаимной ориентации намагниченности, направления распространения световой волны и нормали к поверхности образца. В общем случае линейно поляризованный свет после отражения от поверхности намагниченного материала будет эллиптически поляризованным; при этом большая ось эллипса поляризации повернётся на некоторый угол по отношению к плоскости поляризации падающего света, а интенсивность отраженного света изменится. Эффект Керра схож с эффектом Фарадея, описывающим изменение прошедшего через намагниченный материал света. Оба эффекта связаны с недиагональными компонентами тензора диэлектрической проницаемости εij, являющимися линейными функциями внешнего магнитного поля H или намагниченности M.

История

В 1876 году шотландский физик Джон Керр наблюдает вращение плоскости поляризации света, отраженного от полюса железного магнита[2]. Эффект, наблюдающийся в данной геометрии, получил название Полярного эффекта Керра.

В 1878 году Керр обнаруживает вращение плоскости поляризации при отражении от поверхности, намагниченной в плоскости распространения света [3]. В такой геометрии, когда плоскость падения параллельна намагниченности, эффект известен как Меридиональный эффект Керра.

В 1896 году Питер Зееман открывает Экваториальный эффект Керра, незадолго до этого теоретически предсказанный Виндом [4][5].

В 1955 году Петрос Аргурес публикует теорию [6], в которой объясняет возникновение магнитооптических эффектов Фарадея и Керра за счёт спиновой поляризации электронов и спин-орбитального взаимодействия.

К 1996 году была разработана методика расчёта эффекта Керра, позволяющая из первых принципов зонной теории предсказывать конкретный вид магнитооптических спектров в различных материалах.

В 1996 году, при отражении света от CeSb, Р. Питтини наблюдает наибольший эффект Керра, соответствующий теоретическому максимуму поворота плоскости поляризации на 90 градусов[7].

Геометрия наблюдения

Полярный эффект Керра

В геометрии полярного эффекта Керра внешнее поле или намагниченность ориентированы нормально к поверхности образца и могут взаимодействовать со светом обеих (s и p) поляризаций. Наибольший эффект наблюдается при нормальном падении и описывается простым выражением [8][9], связывающим компоненты тензора диэлектрической проницаемости εij с измеряемыми на опыте вращением ϑ и эллиптичностью Ψ. Если магнитное поле направлено по оси z, то

Φ~=ϑ+iΨ=iεxyn^(εxx1)

где n^=n+ik комплексный показатель преломления

Из приведённого выражения видно, что в непоглощающих средах, у которых тензор диэлектрической проницаемости содержит только действительные компоненты, поворот плоскости поляризации при отражении не наблюдается.

Полярный эффект Керра изменяется линейно с полем и вращение меняет знак при перемагничивании образца. Для неферромагнитных материалов этот эффект иногда называют «полярный эффект Фарадея в отраженном свете».

Меридиональный эффект Керра

В некоторых русскоязычных работах меридиональный эффект Керра называют продольным или меридиональным.

Вектор намагниченности лежит в плоскости отражающей поверхности и параллелен плоскости падения света. Наибольший эффект наблюдается при больших углах падения. При нормальном падении эффект не наблюдается.

Экваториальный эффект Керра

В некоторых русскоязычных работах экваториальный эффект Керра называют поперечным.

В экваториальном эффекте Керра вектор намагниченности перпендикулярен плоскости падения света и параллелен поверхности образца. Эффект проявляется только для компоненты поляризации, нормальной к намагниченности (p-компоненты) и равен нулю для света, поляризованного параллельно намагниченности (s-компоненты). Экваториальный эффект Керра является эффектом первого порядка по намагниченности. Его проявление заключается в изменении коэффициента отражения под действием намагниченности и, как следствие, в изменении интенсивности света и сдвиге фазы линейно-поляризованного света. Данный эффект может наблюдаться только для поглощающих материалов, то есть для материалов с ненулевой компонентой комплексной части тензора диэлектрической проницаемости. Для действительной части тензора диэлектрической проницаемости и для s-компоненты поляризации света может наблюдаться только более слабый квадратичный по намагниченности эффект.

Нелинейные по намагниченности эффекты

В дополнение к полярному, меридиональному и экваториальному линейным эффектам Керра, возможны квадратичные эффекты более высокого порядка, при которых угол поворота плоскости поляризации зависит от произведения намагниченностей в полярном, продольном и поперечном направлениях. Подобные эффекты, также иногда называемые квадратичными эффектами Керра, известны как эффект Фогта.Шаблон:Ref-en и эффект Коттона — Мутона

Магнитооптические среды

В зависимости от того, какое взаимодействие является определяющим, среди магнитооптических материалов выделяют два класса:

В первом классе материалов магнитооптические эффекты являются результатом прямого воздействия магнитного поля на орбитальное движение электронов (Зеемановское расщепление). К данному классу принадлежат диамагнетики и прозрачные твердые тела одноосной симметрии, в которых диамагнетизм всегда присутствует. Возникающие в них магнитооптические эффекты в общем случае очень слабы.

Ко второму классу магнитооптических материалов относятся ферромагнитные материалы и неметаллические парамагнетики при низких температурах. В них магнитооптические эффекты возникают за счёт влияния магнитного поля на спин-орбитальное взаимодействие. Так как спин-орбитальное взаимодействие в общем случае на 2-3 порядка больше, чем зеемановское расщепление, магнитное взаимодействие ориентированных спинов приводит к сильному воздействию на орбитальное движение электронов, которое значительно больше, чем прямое воздействие на него магнитного поля [8].

Отметим, что термины диамагнитный и парамагнитный являются условными [9], так как величина вращения плоскости поляризации, вызванная этими эффектами, может быть как положительной, так и отрицательной (в противоположность соответствующим магнитным восприимчивостям).

Полупроводники и неферромагнитные металлы образуют переходный класс между описанными выше. В таких средах некоторые из возникающих магнитооптических эффектов связаны только с орбитальными эффектами, в то время как другие связаны со спин-орбитальным взаимодействием. Однако, в этих материалах оба вклада в магнитооптические эффекты могут быть согласованы, и нет четкого различия, поэтому диэлектрическую проницаемость лучше описывать как функцию внешнего магнитного поля.

Описание

Макроскопическое

Конкретные свойства среды задаются видом тензоров диэлектрической проницаемости ε^ и магнитной проницаемости μ^. В области оптических частот магнитная проницаемость стремится к единице, поэтому мы ограничимся рассмотрением тензора ε^, однако в области низких частот приведённые ниже свойства ε^ справедливы и для μ^.

В случае оптически изотропного ферромагнетика в магнитном поле, направленном вдоль оси z, тензор диэлектрической проницаемости можно записать в виде [9]:

ε^=n^2(1iQ0iQ10001)

где εxx=n^=n+ik комплексный показатель преломления, Q=εxyεxx — магнитооптический коэффициент.

Для произвольного угла падения ϕ магнитооптический эффект Керра Φ~=ϑ+iΨ,

где ϑ и Ψ — измеряемые на опыте вращение и эллиптичность, запишется в виде:

В полярной геометрии

Φ~=in^2(sinϕtgϕ±n^2sin2ϕ)(n^21)(n^2tg2ϕ)Q

В меридиональной геометрии

Φ~=in^2sinϕ(sinϕtgϕ±n^2sin2ϕ)(n^21)(n^2tg2ϕ)n^2sin2ϕQ

Для p-поляризации перед корнем в числителе берётся знак "+", для s-поляризации перед корнем берётся знак "—"

В экваториальной геометрии

δp=ΔII=Im4n^2tgϕ(n^21)(n^2tg2ϕ)Q

Микроскопическое

Магнитооптические эффекты в ферромагнитных металлах вызваны не классическим закручиванием электронов силой Лоренца, а связаны с внутризонными и межзонными переходами. Причем внутризонные переходы определяют магнитооптические эффекты в области низких энергий, в то время как межзонные – в области высоких.

Внутризонный механизм связан со спин-орбитальным взаимодействием, которое вызывает асимметричное рассеяние электронов и нормальное рассеяние электронов, ассоциируемое с внутризонным поляризационным током, нормальным к вектору намагниченности и вектору движущегося электрона. Эти эффекты, в основном, определяются d- электронами, так как для них спин-орбитальное расщепление значительнее, чем для s- и p-электронов.

Межзонные поглощение в металлах ассоциируется с переходами с поверхности Ферми в вышележащую пустую зону или с переходом из нижележащей заполненной зоны на поверхность Ферми.

См. также

Примечания

Шаблон:Примечания

На русском языке

На английском языке

Ссылки

Шаблон:Нет иллюстраций

  1. Термин линейный применительно к магнитооптическим эффектам используют как для указания на линейную поляризацию падающего света, так и на то, что эффект линейно зависит от приложенного магнитного поля или намагниченности. Здесь имеется в виду линейный по намагниченности эффект.
  2. Шаблон:Статья
  3. Шаблон:Статья
  4. Шаблон:Статья
  5. Wind, C. H., 1896, Verhandl. Amsterdam Acad. 5, 91
  6. Шаблон:Статья
  7. Шаблон:Статья
  8. 8,0 8,1 Шаблон:Arf
  9. 9,0 9,1 9,2 Шаблон:Arf