Многогранник Силаши

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Многогранник

Многогранник Силаши (Силашши[1]) — пример невыпуклого многогранника, топологически эквивалентного тору. Назван по имени венгерского математика Шаблон:Не переведено 5, обнаружившего многогранник в 1977 году.

Свойства

  • Имеет 7 шестиугольных граней.
  • Каждая грань этого многогранника имеет общее ребро с любой другой гранью.
    • Как результат, для его правильной раскраски (чтобы смежные грани имели разные цвета) требуется семь цветов. Это даёт нижнюю оценку в Шаблон:Нп3.
  • Многогранник имеет ось симметрии.
  • Три пары граней попарно конгруэнтны, а одна непарная грань сама имеет вращательную симметрию, ту же самую, что и у многогранника.
  • 14 вершин и 21 ребро многогранника Силаши образуют вложение графа Хивуда в поверхность тора.
  • Тетраэдр и многогранник Силаши — единственные известные многогранники, у которых любые две грани имеют общее ребро.
    • Если многогранник с f гранями вложен в поверхность с h дырами таким образом, что каждые две грани имеют общее ребро, из эйлеровой характеристики следует, что
      h=(f4)(f3)12.
Это равенство выполняется для тетраэдра с h = 0 и f = 4 и для многогранника Силаши с h = 1 и f = 7. Следующее возможное решение с h = 6 и f = 12 могло бы соответствовать многограннику с 44 вершинами и 66 рёбрами, но неизвестно, существует ли такой многогранник. В общем случае это уравнение может выполняться только при f, сравнимом с 0, 3, 4 или 7 по модулю 12.

В культуре

Примечания

Шаблон:Примечания

Литература

Ссылки

Шаблон:Многогранники