Одноэлектронное приближение

Материал из testwiki
Перейти к навигации Перейти к поиску

Одноэлектронное приближение — приближённый метод нахождения волновых функций и энергетических состояний квантовой системы со многими электронами.

В основе одноэлектронного приближения лежит предположение, что квантовую систему можно описать как систему отдельных электронов, движущихся в усреднённом потенциальном поле, которое учитывает взаимодействие как с ядрами атомов, так и с другими электронами. Волновая функция многоэлектронной системы в одноэлектронном приближении выбирается в виде детерминанта Слэтера определённого набора функций, зависящих от координат одной частицы. Эти функции являются собственными функциями одноэлектронного гамильтониана с усреднённым потенциалом.

В идеале потенциал, в котором движутся электроны, должен быть самосогласованным. Чтобы достичь этой цели, используют итерационную процедуру, например, метод Хартри-Фока или его релятивистское обобщение — приближение Хартри-Фока-Дирака. Однако часто систему описывают модельным потенциалом.

Числа заполнения

Одноэлектронный гамильтониан в общем случае имеет вид

H^=22mΔ+V(𝐫),

где V(𝐫) — усреднённый потенциал. Спектр волновых функций гамильтониана определяется решениями уравнения

H^ψi=Eiψi,

где i — индекс для нумерации этих функций. Для построения волновой функции многоэлектронной системы с N электронами можно выбрать N любых функций или N суперпозиций этих функций, однако, учитывая принцип запрета Паули, все они должны быть разными.

Основному состоянию квантовой системы соответствует набор из N функций, для которых одноэлектронные энергии Ei минимальны. Полная энергия основного состояния системы определяется суммой одноэлектронных энергий

E=i=1NEi.

Волновая функция многоэлектронной системы конструируется из волновых функций ψi с учётом требования антисимметричности по перестановкам. В основном это делается с использованием детерминанта Слэтера. Используя операторы рождения, эту волновую функцию можно представить в виде

ψ=a^1a^2a^N|0.

Волновую функцию возбуждённого состояния можно построить, выбрав вместо одной из собственных функций одноэлектронного гамильтониана с наименьшей энергией любую другую функцию.

В общем, если выбрать произвольный набор одноэлектронных волновых функций, то волновую функцию многоэлектронной системы можно характеризовать набором индексов одноэлектронных функций: |i1,i2,,in, или же считать, что некоторые из одноэлектронных состояний заполнены, а некоторые нет. Присваивая заполненным состояниям число 1, а незаполненным — 0, можно построить бесконечную цепочку единиц и нулей, характеризующую состояние многоэлектронной системы. Такая цепочка называется представлением чисел заполнения.

В статистической физике волновая функция многоэлектронной системы не может быть определена точно. Состояние системы смешанное и описывается матрицей плотности, которая удовлетворяет распределению Ферми-Дирака.

Значения

Метод одноэлектронного приближения широко используется в квантовой химии и теории твёрдого тела. В частности, на нём основывается зонная теория. Шаблон:Численные методы в зонной теории Шаблон:Physics-stub Шаблон:Нет ссылок