Определитель Вандермонда
Определитель Вандермонда — выражение вида
где — элементы некоторого поля. Матрицей Вандермонда называется либо матрица [1][2], либо её транспонированная версия [3][4][5][6]. Матрица и её определитель названы в честь французского математика А. Т. Вандермонда[7].
Определитель Вандермонда равен нулю тогда и только тогда, когда существует хотя бы одна пара такая, что [8].
Доказательство
Свойства
Матрица Вандермонда представляет собой частный случай альтернативной матрицы, в которой .
Если — первообразный корень -й степени из единицы и — матрица Вандермонда с элементами , то обратная матрица с точностью до диагональной матрицы имеет вид : .
Применение
Определитель Вандермонда имеет многочисленные применения в разных областях математики. Например, при решении задачи интерполяции многочленами, то есть задачи о нахождении многочлена степени , график которого проходит через заданных точек плоскости с абсциссами , определитель Вандермонда возникает как определитель системы линейных уравнений, из которой находятся неизвестные коэффициенты искомого многочлена[2].
Быстрое умножение вектора на матрицу Вандермонда
Быстрое умножение вектора на матрицу Вандермонда эквивалентно нахождению значений многочлена и может быть вычислено за операций, где — затраты на умножения двух полиномов[9]. Метод быстрого нахождения значений многочлена основывается на том факте, что . С использованием алгоритма быстрого умножения многочленов, такого как метод умножения Шёнхаге — Штрассена, и с применением парадигмы «разделяй и властвуй» за умножений многочленов (и операций по модулю многочленов) строится дерево, листьями которого будут многочлены (значения) , а корнем дерева будет многочлен [10].