Пентакисдодекаэдр
Пентакисдодека́эдр (от Шаблон:Lang-grc — «пятижды», Шаблон:Lang-grc2 — «двенадцать» и Шаблон:Lang-grc2 — «грань») — полуправильный многогранник (каталаново тело), двойственный усечённому икосаэдру. Составлен из 60 одинаковых остроугольных равнобедренных треугольников, в которых один из углов равен а два других
Имеет 32 вершины; в 12 вершинах (расположенных так же, как вершины икосаэдра) сходятся своими бо́льшими углами по 5 граней, в 20 вершинах (расположенных так же, как вершины додекаэдра) сходятся меньшими углами по 6 граней.
У пентакисдодекаэдра 90 рёбер — 30 «длинных» (расположенных так же, как рёбра додекаэдра) и 60 «коротких». Двугранный угол при любом ребре одинаков и равен
Пентакисдодекаэдр можно получить из додекаэдра, приложив к каждой его грани правильную пятиугольную пирамиду с основанием, равным грани додекаэдра, и высотой, которая в раз меньше стороны основания. При этом полученный многогранник будет иметь по 5 граней вместо каждой из 12 граней исходного — с чем и связано его название.

Метрические характеристики
Если «короткие» рёбра пентакисдодекаэдра имеют длину , то его «длинные» рёбра имеют длину а площадь поверхности и объём выражаются как
Радиус вписанной сферы (касающейся всех граней многогранника в их инцентрах) при этом будет равен
радиус полувписанной сферы (касающейся всех рёбер) —
Описать около пентакисдодекаэдра сферу — так, чтобы она проходила через все вершины, — невозможно.