Правила Фейнмана

Материал из testwiki
Перейти к навигации Перейти к поиску

Правила Фе́йнмана в квантовой теории поля — правила соответствия между вкладами определенного порядка теории возмущений в матричные элементы матрицы рассеяния и диаграмм Фейнмана. Регулярный вывод правил Фейнмана основан на применении теоремы Вика для хронологических произведений к хронологическим произведениям полевых операторов, через интегралы от которых выражаются вклады в матрицу рассеяния. В правилах Фейнмана центральную роль играют пропагаторы квантовых полей, равные их хронологическим спариваниям, то есть вакуумным ожиданиям от парных хронологических произведений:

ua(x)ub(y)=Tua(x)ub(y)0.

которые также равны причинным функциям Грина этих полей:

ua(x)ub(y)=iδa,bΔac(xy).

Наряду с пропагаторами iΔ(xy), которым в диаграммах Фейнмана соответствуют линии, соединяющие точки х и у, и которые полностью характеризуют взаимодействующие поля, правила Фейнмана включают элементы, описывающие механизм взаимодействия и отражающие структуру лагранжиана взаимодействия рассматриваемой квантовополевой модели.

Существуют две разновидности правил Фейнмана

  1. правила в координатном представлении, на основе которых можно сопоставить диаграммы вкладам в S-матрицу, выраженным через операторные полевые функции
  2. более полезными оказываются правила Фейнмана в импульсном представлении, которые служат непосредственно для построения матричных элементов переходов между физ. состояниями, характеризуемыми наряду с прочими квантовыми числами значениями 4-импульсов частиц.

В дальнейшем термином «правила Фейнмана» будем называть именно правила Фейнмана в импульсном представлении.

В этом представлении вместо вышеприведенных выражений используют их фурье-образы Δa(p), которым на диаграмме Фейнмана соответствуют внутренние линии, по которым как бы движутся частицы с импульсом р. Места встречи линий — вершины — описывают взаимодействия частиц. Поэтому, согласно правилам Фейнмана, вершинам отвечают множители в матричных элементах, передающие структуру лагранжианов взаимодействия. В качестве иллюстрации в таблице приведены правила соответствия для квантовой электродинамики в диагональной (иначе фейнмановской) калибровке электромагнитного поля.

Правила Фейнмана для квантовой электродинамки
Элементы Диаграммы Фактор в S-матричном элементе
название изображение
1 Вершина Файл:Image1 for table1 feynmann diagramm.PNG (2π)4ieγμδ(4)(p+kp)
2 Внутренняя фотонная линия Файл:Image2 for table1 feynmann diagramm.PNG 1(2π)4iεμ,νk2
3 Внутренняя электронно-позитронная линия 1(2π)4im+p^m2p2p^=γμρμ
4 Внешняя фотонная линия Файл:Image4 for table1 feynmann diagramm.PNG (eα(k))μ(2π)3/22k0
5 Внешняя выходящая электронная линия Файл:Image5 for table1 feynmann diagramm.PNG (2π)3/2vσ(ρ)
6 Внешняя выходящая линия (2π)3/2vρ(ρ)
7 для построения вклада n-го порядка по e в матричный элемент заданного процесса следует нарисовать все диаграммы, содержащие ровно n вершин, соединяющие их внутренние линии и заданный набор внешних линий, определяемый суммарно начальным и конечным состоянием рассматриваемого процесса. При этом следует иметь в виду, что направления, указанные стрелками на электронных линиях, отвечают движению позитрона против направления стрелок
8 каждой из этих диаграмм по правилам соответствия из табл. путём перемножения факторов из правой колонки, упорядоченных по движению вдоль электронных линий, ставится в соответствие выражение, которое затем должно быть проинтегрировано по 4-импульсам и просуммировано по всем индексам всех внутр. линий;
9 если в диаграмме имеется l замкнутых электронных петель, то всё выражение должно быть умножено на (— 1)l
10 если в диаграмме имеется топологическая симметрия k-го порядка, то есть можно переставить k вершин, не изменив топологию диаграммы, то следует добавить множитель (k!)−1
11 если в начальном или конечном состоянии имеются тождественные частицы, то следует провести соответствующую симметризацию.

Выражение, стоящее в первой строке таблицы правил соответствия, отвечает структуре лагранжиана взаимодействия (x)=eψ(x)γμψ(x)Aμ(x), за исключением множителя i, который учитывает тот факт, что вклад n-го порядка в S-матрицу содержит множитель in:

Sninn!T((x1)...(xn))dx1...dxn.

Две следующие строчки содержат пропагаторы полей, а затем в правилах соответствия фигурируют вектор поляризации фотона eα(k) и неквантованные дираковские спиноры v(ρ),v(p), являющиеся решениями свободного уравнения Дирака и отвечающие электронам (и/или позитронам) в начальном и конечном состояниях.

Пример применения

Файл:Image1 feynmann Rules.PNG

Пользуясь приведёнными правилами Фейнмана, получим матричный элемент процесса е → е (то есть мёллеровского рассеяния электронов) в низшем, втором по e, порядке теории возмущений. Единственной диаграммой оказывается диаграмма, приведённая на рис. 6. Используя введённые на этом рисунке импульсные обозначения, положим, что импульсы электронов в начальном состоянии равны p1 и р2, а электроны конечного состояния обладают импульсами — q1 , q2 (при этом, разумеется, q10 < 0, q20 < 0). Используя правила (1), (2), (5), (6) и (8), находим:

M(p1,p2,q1,q2)=e2i(2π)2δ(p1+p2+q1+q2)gμ,ν(p1+q1)2vσ(q1)γμvρ(p1)vκ(q2)γνvλ(p2).

Согласно правилу (11), это выражение следует ещё антисимметризовать по электронам начального и конечного состояний.

Из релятивистской квантовой теории поля метод диаграмм Фейнмана и правила Фейнмана непосредственно переносится в квантовую статистику при нулевой температуре и без труда формулируется для теории возмущений при конечной температуре.

См. также

Диаграммы Фейнмана

Литература

  • Feynman R. P. Space-time approach to quantum electrodynamics // Phys. Rev., 1949, v. 76, p. 769
  • Фейнман Р. Квантовая электродинамика / Пер. с англ. — М., 1964 djvu-формат книги
  • Биленький С. М. Введение в диаграммную технику Фейнмана. — М., 1971
  • Боголюбов Н. Н., Ширков Д. В. Квантовые поля. — 2-е изд. — М., 1993.