Прямое произведение графов

Материал из testwiki
Перейти к навигации Перейти к поиску
Декартово произведение графов.

Декартово произведение или прямое произведение [1] G H графов G и H — это граф, такой, что

  • множество вершин графа G H — это прямое произведение V(G) × V(H)
  • любые две вершины (u,u') и (v,v') смежны в G H тогда и только тогда, когда
    • либо u=v и u' смежна v' в H
    • либо u' =v' и u смежна v в G.

Декартово произведение может быть распознано эффективно за линейное время[2]. Операция является коммутативной как операция на классах изоморфизмов графов, и более строго, графы G H и H G естественно изоморфны, но операция не является коммутативной как операция на помеченных графах. Операция является также ассоциативной, так как графы (F G) H и F (G H) естественно изоморфны.

Обозначение G × H порой используется и для декартова произведения графов, но чаще оно используется для другой конструкции, известной как тензорное произведение графов. Символ квадратика чаще используется и является недвусмысленным для декартова произведения графов. Он показывает визуально четыре ребра, получающиеся в результате декартова произведения двух рёберШаблон:Sfn

Примеры

  • Декартово произведение двух рёбер является циклом с четырьмя вершинами: K2 K2=C4.
  • Декартово произведение K2 и пути является лестницей.
  • Декартово произведение двух путей является решёткой.
  • Декартово произведение n рёбер является гиперкубом:
(K2)n=Qn.
Таким образом, декартово произведение двух графов гиперкубов является другим гиперкубом — Qi Qj=Qi+j.

Свойства

Если связный граф является декартовым произведением, его можно разложить единственным образом на произведение простых множителей, графов, которые нельзя разложить на произведение графов Шаблон:SfnШаблон:Sfn. Однако, Имрих и КлавжарШаблон:Sfn описали несвязный граф, который можно представить двумя различными путями как декартово произведение простых графов:

(K1 + K2 + K22) (K1 + K23)=(K1 + K22 + K24) (K1 + K2),

где знак плюс означает несвязное объединение, а верхний индекс означает кратное декартово произведение.

Декартово произведение является вершинно-транзитивным графом тогда и только тогда, когда каждое из его множителей является вершинно-транзитивнымШаблон:Sfn.

Декартово произведение является двудольным тогда и только тогда, когда каждый из его множителей является двудольным. Более обще, хроматическое число декартова произведения удовлетворяет уравнению

χ(G H)=max {χ(G), χ(H)}Шаблон:Sfn.

Гипотеза Хедетниеми утверждает связанное равенство для тензорного произведения графов. Число независимости декартовых произведений непросто вычислить, но, как показал ВизингШаблон:Sfn, число независимости удовлетворяет неравенствам

α(G)α(H) + min{|V(G)|-α(G),|V(H)|-α(H)} ≤ α(G H) ≤ min{α(G) |V(H)|, α(H) |V(G)|}.

Гипотеза Визинга утверждает, что число доминирования декартова произведения удовлетворяет неравенству

γ(G H) ≥ γ(G)γ(H).

Алгебраическая теория графов

Алгебраическую теорию графов можно использовать для анализа декартова произведения графов. Если граф G1 имеет n1 вершин и n1×n1 матрицу смежности 𝐀1, а граф G2 имеет n2 вершин и n2×n2 матрицу смежности 𝐀2, то матрица смежности декартова произведения двух графов задаётся формулой

𝐀12=𝐀1𝐄n2+𝐄n1𝐀2,

где означает произведение Кронекера матриц, а 𝐄n означает n×n единичную матрицуШаблон:Sfn.

История

Согласно Имриху и КлавжаруШаблон:Sfn декартовы произведения графов определили в 1912 Уайтхед и Рассел. Произведение графов неоднократно переоткрывалось позже, в частности, Гертом СабидуссиШаблон:Sfn.

Примечания

Шаблон:Примечания

Литература

Шаблон:Refbegin

Шаблон:Refend

Ссылки

Шаблон:Rq

  1. Визинг использовал термин «декартово произведение», в статье «Прямое произведение» то же произведение называется прямым.
  2. Шаблон:Harv. Для более ранних алгоритмов полиномиального времени см. статью Фейгенбаума, Хершбергерга и Шеффера Шаблон:Harv, а также статью Ауренхаммера, Хагауэра и ИмрихаШаблон:Harv.