Свободное поле

Материал из testwiki
Перейти к навигации Перейти к поиску

Свободное поле — физическое поле, квантами которого являются невзаимодействующие частицы, и которое описывается терминами энергии и импульса.Шаблон:Sfn Свободные поля соответствуют различным частицам, представляя собой основу для описания этих частиц в рамках теории взаимодействующих полей.Шаблон:Sfn

Описание

В классической физике свободное поле — это поле, уравнения движения которого задаются Шаблон:Не переведено 5 дифференциальными уравнениями в частных производных (УЧП).Шаблон:Sfn Они имеют единственное решение для данного начального условия.

В квантовой теории поля квантованное поле, математически описываемое обобщёнными функциями с операторными значениеми является свободным полем, если оно удовлетворяет некоторым линейным УЧП, таким что соответствующий случай тех же линейных УЧП для классического поля будет уравнением Эйлера-Лагранжа для некоторого квадратичного лагранжиана.Шаблон:Sfn Мы можем дифференцировать эти обобщённые функции, определяя их производные с помощью дифференцированных обобщённых функций. См. обобщённую функцию для получения более подробной информации. Поскольку мы имеем дело не с обычными обобщёнными функциями, а с обобщёнными функциями, с операторными значениями, понятно, что эти УЧП не являются ограничениями на состояния, а вместо этого описывают отношения между протяжёнными полями. Помимо УЧП, операторы также удовлетворяют другим соотношению — соотношениям коммутации и антикоммутации.

Каноническое коммутационное отношение

Как правило, коммутатор (для бозонов) или антикоммутатор для фермионов, для двух протяжённых полей есть произведение i раз в Шаблон:Не переведено 5 поля с самим собой (которое описывается действительно обобщённой, а не обычной функцией), для уравнения в частных производных обобщённой функции протяжённого поля. Математически это описывает Шаблон:Не переведено 5.

Алгебры CCR/CAR с бесконечно многими степенями свободы имеют множество неэквивалентных неприводимых унитарных представлений. Если теория определена над пространством Минковского, мы можем выбрать унитарное неприводимое представление, содержащее вакуумное состояние, хотя это не всегда необходимо.

Пример

Пусть ϕ — обобщённая функция с операторным значением и УЧП (Клейна-Гордона):

μμϕ+m2ϕ=0.

Это бозонное поле. Определим обобщённую функцию Шаблон:Не переведено 5 Δ

Тогда,

{ϕ(x),ϕ(y)}=Δ(x;y)

где ϕ — классическое поле и {,} — скобки Пайерлса.

Тогда, каноническое коммутационное соотношение

[ϕ[f],ϕ[g]]=iΔ[f,g].

Заметим, что Δ — обобщённая функция с двумя аргументами и может быть бесконечно протяжённой.

Эквивалентно, мы могли бы настоять на том, чтобы

𝒯{[((μμ+m2)ϕ)[f],ϕ[g]]}=iddxf(x)g(x)

где 𝒯 — оператор временного упорядочения и f и g разделены пространственноподобным четырёхмерным интервалом.

[ϕ[f],ϕ[g]]=0.

См. также

Примечания

Шаблон:Примечания

Литература