Селен

Материал из testwiki
Перейти к навигации Перейти к поиску

Шаблон:Значения Шаблон:Карточка химического элемента Шаблон:Элемент периодической системы

Селе́н (химический символ — Se, от Шаблон:Lang-la) — химический элемент 16-й группы (по короткопериодной форме — главной подгруппы шестой группы, VIA), четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 34.

Простое вещество селен — это хрупкий, блестящий на изломе неметалл серого цвета (данный цвет обусловлен устойчивой аллотропной модификацией, неустойчивые аллотропные модификации придают селену различные оттенки красного цвета). Шаблон:-

История

Элемент открыт Йёнсом Якобом Берцелиусом в 1817 году. О том, как произошло это открытие, сохранился Шаблон:Начало скрытого блока Я исследовал в содружестве с Готлибом Ганом метод, который применяют для производства серной кислоты в Грипсхольме. Мы обнаружили в серной кислоте осадок, частью красный, частью светло-коричневый. Этот осадок, опробованный с помощью паяльной трубки, издавал слабый редечный запах и образовывал свинцовый королёк. Согласно Клапроту, такой запах служит указанием на присутствие теллура. Ган заметил при этом, что на руднике в Фалуне, где собирается сера, необходимая для производства кислоты, также ощущается подобный запах, указывающий на присутствие теллура. Любопытство, вызванное надеждой обнаружить в этом коричневом осадке новый редкий металл, заставило меня исследовать осадок. Приняв намерение отделить теллур, я не смог, однако, открыть в осадке никакого теллура. Тогда я собрал всё, что образовалось при получении серной кислоты путём сжигания фалюнской серы за несколько месяцев, и подверг полученный в большом количестве осадок обстоятельному исследованию. Я нашёл, что масса (то есть осадок) содержит до сих пор неизвестный металл, очень похожий по своим свойствам на теллур. В соответствии с этой аналогией я назвал новое тело селеном (Selenium) от греческого Шаблон:Lang-el2 (луна), так как теллур назван по имени Tellus — нашей планеты[1]. Шаблон:Конец скрытого блока

В 1873 году Уиллоуби Смит обнаружил, что электрическое сопротивление серого селена зависит от освещённости. Это свойство стало основой для создания чувствительных к свету ячеек. Первые коммерческие фоточувствительные ячейки был представлены на рынке в середине 1870-х годов Вернером фон Сименсом.

Селеновая ячейка использовалась в фотофоне, созданном Александром Беллом в 1879 году.

Сила электрического тока через селеновую ячейку пропорциональна световому потоку, падающему на её поверхность, — это свойство используется в различных измерителях освещённости (экспонометрах).

Полупроводниковые свойства селена нашли применение в других областях электроники[2][3][4]. В 1930-е годы началось использование селеновых выпрямителей пришедших на смену медно-закисным выпрямителям благодаря большей эффективности[5][6][7]. Селеновые выпрямители использовались до 1970-х годов, вытесненные боле совершенными кремниевыми выпрямителями.

В более позднее время была обнаружена токсичность селена. Были зарегистрированы случаи отравления людей, работавших на селеновых производствах, а также животных, поедавших богатые селеном растения. В 1954 году были обнаружены первые признаки биологического значения селена для микроорганизмов[8][9]. В 1957 году была установлена важная роль селена в биологии млекопитающих[10][11]. В 1970-е годы было показано наличие селена в двух независимых группах ферментов, а затем обнаружена селеносодержащая аминокислота селеноцистеин в некоторых белках. В 1980-е годы было установлено, что селеноцистеин кодируется в ДНК кодоном UGA. Механизм кодирования был установлен сначала для бактерий, а затем и для млекопитающих (SECIS-элемент)[12].

Происхождение названия

Название происходит от Шаблон:Lang-el — Луна. Элемент назван так в связи с тем, что в природе он является спутником химически сходного с ним теллура (названного в честь Земли).

Нахождение в природе

Натуральный селен

Содержание селена в земной коре — около 500 мг/т. Основные черты геохимии селена в земной коре определяются близостью его ионного радиуса к ионному радиусу серы и поэтому он является спутником химически сходного с ним теллура. Известно 37 минералов селена, основные из них — ашавалит FeSe, клаусталит PbSe, тиманнит HgSe, гуанахуатит Bi2(Se,S)3, хастит CoSe2, платинит PbBi2(S,Se)3, ассоциирующие с различными сульфидами, а иногда также с касситеритом. Изредка встречается самородный селен. Главное промышленное значение для получения селена имеют сульфидные месторождения. Содержание селена в сульфидах колеблется от 7 до Шаблон:Nobr.

Концентрация селена в морской воде Шаблон:Nobr[13]. На территории Кавказских минеральных вод есть источник с содержанием селена Шаблон:Nobr[14].

Физические свойства

Монокристаллический селен чистотой 99,9999 %

Плотность жидкого серого селена при температуре плавления 4,06 г/см3.

Твёрдый селен при нормальных условиях имеет несколько аллотропных модификаций с существенно различными термодинамическими, механическими и электрическими свойствами[15]:

  • Серый кристаллический селен (Шаблон:Math-Se, «металлический селен») — наиболее устойчивая модификация, структура состоит из параллельных цепей в виде винтовых линий. Образуется при конденсации пара, медленным охлаждением расплава, длительным нагреванием других форм селена. Образует кристаллы Шаблон:Крист. Температура плавления 221 °C. Температура кипения 685 °C.

Твёрдость по Моосу 2,0. Твёрдость по Бриннелю ≈750 МПа. Модуль нормальной упругости 10,2 ГПа. Хрупок, выше 60 °C становится пластичным. Теплопроводность 0,5 Вт/(м·К). Температурный коэффициент линейного расширения 25,5·10−6 К−1 (при 0 °C). Является полупроводником с дырочной проводимостью, ширина запрещённой зоны 1,8 эВ, удельное электрическое сопротивление 80 Ом·м, температурный коэффициент сопротивления 0,6·10−3 К−1 (в интервале температур 25…125 °C). Диамагнетик, магнитная восприимчивость −0,469·10−9.

  • Красный кристаллический селен — три моноклинные модификации, содержащие кольцевые коронообразные молекулы Se8, получаются осаждением из растворов селена в сероуглероде:
  • Красный аморфный селен. Мелкий порошок от ярко-красного до красновато-чёрного цвета, молекулы с цепочечной структурой. Плотность 4,26 г/см3. Получается восстановлением селенистой кислоты на холоду и другими путями.
  • Чёрный стекловидный селен. Получается при быстром охлаждении расплава. Хрупок. Имеет стеклянный блеск. Цвет от голубовато-чёрного до красно-коричневого. Содержит в основном плоские цепочечные зигзагообразные молекулы. Плотность 4,28 г/см3. Изолятор, удельное электрическое сопротивление ≈1010 Ом·м.

При сильном нагревании серого селена[16] он плавится, а потом и испаряется с образованием паров смешанных модификаций селена при быстром охлаждении которых конденсируется красный аморфный селен.

При высоких давлениях (от 27 МПа) селен переходит в кубическую модификацию с ребром ячейки 0,2982 нм.

При 10—12 МПа из аморфного и моноклинного селена получена также метастабильная гексагональная модификация с металлическими свойствами[15].

Химические свойства

Селен — аналог серы и проявляет степени окисления −2 (H2Se), +4 (SeO2) и +6 (SeO3, H2SeO4). Однако, в отличие от серы, соединения селена в степени окисления +6 — сильнейшие окислители, а соединения селена(−II) — гораздо более сильные восстановители, чем соответствующие соединения серы.

В виде простого вещество селен гораздо менее активен химически, чем сера. Так, в отличие от серы, селен самостоятельно не горит на воздухе[17].

Поджечь селен удаётся только при дополнительном нагревании, при этом он медленно горит синим пламенем, образуя диоксид SeO2.

Se+OA2250AoCSeOA2

Окисляется азотной кислотой до оксида селена(IV):

Se+4HNOA3tSeOA2+4NOA2+2HA2O

Со щелочными металлами селен реагирует (весьма бурно), только будучи расплавленным[18], при этом образуются селениды:

Se+2KtKA2Se

При комнатной температуре реагирует с галогенами кроме иода:

Se+3FA2SeFA6
Se+2ClA2SeClA4
2Se+ClA2SeA2ClA2
Se+2BrA2SeBrA4
2Se+BrA2SeA2BrA2

Реакция с иодом считается неоднозначной, и по некоторым данным, приводит к образованию иодидов селена в, например, дисульфиде углерода.[19]

Реагирует с щелочами:

3Se+6KOHKA2SeOA3+2KA2Se+3HA2O

Однако, как и с серой, реакция идёт дальше с образованием полиселенидов:

SeA2+xSeSeA1+xA2

Селен образует полимерные катионы при реакции с дисерной кислотой (олеумом) при комнатной температуре, со 100% серной кислотой при нагревании, ввиду чего раствор принимает зелёный цвет:[20]

8Se+6HA2SA2OA7SeA8A2++2HSA3OA10A+5HA2SOA4+SOA2
8Se+5HA2SOA4tSeA8A2++2HA3OA++4HSOA4A+SOA2

При длительном стоянии, раствор селена в дисерной кислоте переходит в жёлтый цвет, вызванный полимерным катионом тетраселена Se42+:[20]

4Se+6HA2SA2OA7SeA4A2++2HSA3OA10A+5HA2SOA4+SOA2

Такая же реакция может быть вызвана при добавлении диоксида селена в раствор селена в серной кислоте:[20]

7SeA8A2++4SeOA2+24HA2SOA415SeA4A2++8HA3OA++24HSOA4A

Эти реакции могут быть использованы для аналитического определения элементарного селена

Получение

Значительные количества селена получают из шлама медно-электролитных производств, в котором селен присутствует в виде селенида серебра[21]. Применяют несколько способов получения: окислительный обжиг с возгонкой SeO2; нагревание шлама с концентрированной серной кислотой, окисление соединений селена до SeO2 с его последующей возгонкой; окислительное спекание с содой, конверсия полученной смеси соединений селена до соединений Se(IV) и их восстановление до элементного селена действием SO2.

Получить высокочистый селен можно при сжигании низкосортного технического селена в токе кислорода при 500—550° С и сублимации полученной двуокиси селена при 320—350 °С. Двуокись селена растворяют в дистиллированной воде. А затем восстанавливая H2SeO3 сернистым газом:

𝖲𝖾𝖮𝟤+𝖧𝟤𝖮  𝖧𝟤𝖲𝖾𝖮𝟥
𝖧𝟤𝖲𝖾𝖮𝟥+𝟤𝖲𝖮𝟤+𝖧𝟤𝖮  𝖲𝖾+𝟤𝖧𝟤𝖲𝖮𝟦

При окислительном методе шлам обрабатывается азотной кислотой, сплавляется с калийной селитрой и т. д. Образующиеся при этом оксиды селена (SeО2, иногда SeО3) переходят в раствор, и, после выпаривании азотной кислоты, выпавший сухой остаток растворяется в концентрированной соляной кислоте, после чего SeO2 восстанавливается, например, сернистым газом:

𝟤𝖧𝟤𝖮+𝟤𝖲𝖾𝖮𝟤+𝟤𝖲𝖮𝟤  𝟤𝖧𝟤𝖲𝖮𝟦+𝖲𝖾

При растворении в сульфите натрия с последующим выделением селена кислотой:

𝖭𝖺𝟤𝖲𝖮𝟥+𝖲𝖾  𝖭𝖺𝟤𝖲+𝖲𝖾𝖮𝟥

Промытый от сернистой кислоты шлам с содержанием, например, 2 % селена обрабатывается кальцинированной содой, для перевода примеси сульфата свинца(II) в нерастворимый карбонат свинца:

𝖯𝖻𝖲𝖮𝟦+𝖭𝖺𝟤𝖢𝖮𝟥  𝖯𝖻𝖢𝖮𝟥+𝖭𝖺𝟤𝖲𝖮𝟦

Биологическая роль

Входит в состав активных центров некоторых белков в форме аминокислоты селеноцистеина. Является необходимым для жизни микроэлементом, но большинство соединений достаточно токсичны (селеноводород, селеновая и селенистая кислота).

Роль селена в организме человека

В организме человека содержится 10—14 мг селена, бо́льшая его часть сконцентрирована в печени, почках, селезёнке, сердце, яичках и семенных канатиках у мужчин[22]. Селен присутствует в ядрах клеток.

Суточная потребность человека в селене составляет 70—100 мкг[23][24].

Повышенное содержание селена в организме может приводить к депрессии, тошноте, рвоте, диарее, поражению ЦНС и др.

Селен, являясь химическим аналогом серы, входит в состав биосубстратов в степени окисления −2. Установлено, что он накапливается в ногтях и волосах, так как их основу составляют серосодержащие аминокислоты цистеин и метионин[25]. Метионин необходим для синтеза кератина — основного белка волосяного стержня, а цистеин входит в состав α-кератинов — основного белка ногтей, кожи и волос (известно, что данные две аминокислоты метаболически тесно связаны между собой; очевидно, селен замещает серу в этих аминокислотах, превращая их в селеноцистеин и селенометионин)[26].

Селен в организме взаимодействует с витаминами, ферментами и биологическими мембранами, участвует в регулировании обмена веществ, в обмене жиров, белков и углеводов, а также в окислительно-восстановительных процессах. Селен является составным компонентом более 30 жизненно важных биологически активных соединений организма. Селен входит в активный центр ферментов системы антиоксидантно-антирадикальной защиты организма, метаболизма нуклеиновых кислот, липидов, гормонов (глутатионпероксидазы, йодотиронин-дейододиназы, тиоредоксинредуктазы, фосфоселенфосфатазы, фосфолипид-гидропероксид-глутатионпероксидазы, специфических протеинов Р и W и др.)[27].

Селен входит в состав белков мышечной ткани, белков миокарда. Также селен способствует образованию трийодтиронина (биологически активная форма тиреоидных гормонов щитовидной железы)[27][28].

Селен является синергистом витамина E и иода. При дефиците селена иод плохо усваивается организмом[29].

Ранее неоднократно выдвигались предположения о том, что добавки селена способны снизить частоту заболеваемости онкологическими заболеваниями, что, однако, не подтвердилось проведёнными исследованиями[30].

Применение

  • Одним из важнейших направлений его технологии, добычи и потребления являются полупроводниковые свойства как самого селена, так и его многочисленных соединений (селенидов), их сплавов с другими элементами, в которых селен играет ключевую роль. В современной технологии полупроводников применяются селениды многих элементов, например, селениды олова, свинца, висмута, сурьмы, лантаноидов. Особенно важны свойства фотоэлектрические и термоэлектрические как самого селена, так и селенидов.
  • Радиоактивный изотоп селен-75 используется в качестве источника гамма-излучения для дефектоскопии.
  • Селенид калия совместно с пятиокисью ванадия применяется при термохимическом получении водорода и кислорода из воды (селеновый цикл).
  • Полупроводниковые свойства селена в чистом виде широко использовались в середине XX века для изготовления выпрямителей (они же — селеновые столбы), особенно в военной технике по следующим причинам: в отличие от германия и кремния, селен малочувствителен к ионизирующему излучению, и, кроме того, селеновый выпрямитель самовосстанавливается при пробое: селен в месте пробоя испаряется и не приводит к короткому замыканию выпрямителя, допустимый прямой ток выпрямителя несколько снижается, но прибор сохраняет функциональность. К недостаткам селеновых выпрямителей относятся их значительные габариты при одинаковых допустимых электрических параметрах с кремниевыми диодами.
  • Соединения селена применяются для окрашивания стекла в красный и розовый цвет. Обычно для этого используют металлический селен и селенит натрия Na2SeO3. Красные стекла, окрашенные селеном, называют «селеновым рубином»[31][32]. Селен применялся при производстве стекла рубиновых звёзд Московского Кремля[33][34].

Применение селена в медицине

Селен применяется как противораковое средство, а также для профилактики широкого спектра заболеваний[35]. Из-за его влияния на репарацию ДНК, апоптоз, эндокринную и иммунную системы, а также другие механизмы, включая его антиоксидантные свойства, селен может играть роль в профилактике рака[36][37][38]. Согласно исследованиям[39][40][41][42][43], приём 200 мкг селена в сутки снижает риск заболеваемости раком прямой и толстой кишки на 58 %, опухолями простаты — на 63 %, раком лёгких — на 46 %, снижает общую смертность от онкологических заболеваний на 39 %.

Приём селена в комбинации с коэнзимом Q10 связывают с 55%-м снижением риска смерти больных хронической сердечной недостаточностью[44][45].

Малые концентрации селена подавляют гистамин и за счёт этого оказывают антидистрофический эффект и противоаллергическое действие. Также селен стимулирует пролиферацию тканей, улучшает функцию половых желёз, сердца, щитовидной железы, иммунной системы.

В комплексе с йодом селен используется для лечения йододефицитных заболеваний и патологий щитовидной железы[46]. Тем не менее, согласно кокрановскому обзору 2014 года, доказательства, подтверждающие или опровергающие эффективность приёма селена людьми с аутоиммунным тиреоидитом, неполны и ненадёжны[47].

Соли селена способствуют восстановлению пониженного артериального давления при шоке и коллапсе.[27].

Есть данные, что приём добавок с селеном повышает риск развития сахарного диабета 2-го типа[48].

Известен препарат селена Эбселен[49][50] с противовоспалительной, антиоксидантной и цитопротекторной активностью, который также проявляет активность против COVID-19[51][52][53][54][55][55].

Дисульфид селена (сульсен) применяется в дерматологии, в составе шампуней для лечения заболеваний волосистой части головы (перхоти, себореи).

Токсичность

Общий характер воздействия селена и его соединений

Селен и его соединения ядовиты, по характеру действия несколько напоминает мышьяк; обладает политропным действием с преимущественным поражением печени, почек и ЦНС. Свободный селен менее ядовит. Из неорганических соединений селена наиболее токсичными являются селеноводород, диоксид селена (ЛД50 = 1,5 мг/кг, крысы, интратрахеально) и селениты натрия (ЛД50 = 2,25 мг/кг, кролик, перорально) и лития (ЛД50 = 8,7 мг/кг, крысы, перорально). Особенно токсичен селеноводород, однако, ввиду его отвратительного запаха, ощущаемого даже в ничтожных концентрациях (0,005 мг/л), удаётся избежать отравлений. Органические соединения селена, такие как алкил- или арил-производные (например, диметилселен, метилэтилселен или дифенилселен), являются сильнейшими нервными ядами, с очень отвратительными запахами; так, порог восприятия для диэтилселена составляет 0,0064 мкг/л.

Действие на кожу

Соли селена при непосредственном соприкосновении с кожей вызывают ожоги и дерматиты. Диоксид селена при контакте с кожей способен вызывать резкую боль и онемение. При попадании на слизистые оболочки соединения селена могут вызывать раздражение и покраснение, при попадании в глаза резкую боль, слезотечение и конъюнктивит.

Изотопы

Изотоп Распространённость
в природной смеси, ат. %
Период полураспада
73Se 7,1 час.
74Se 0,87 стабилен
75Se 120,4 сут.
76Se 9,02 стабилен
77Se 7,58 стабилен
77mSe 17,5 сек.
78Se 23,52 стабилен
79Se 6,5Шаблон:E лет
79mSe 3,91 мин.
80Se 49,82 стабилен
81Se 18,6 мин.
81mSe 62 мин.
82Se 9,19 9,7Шаблон:E лет
83mSe 69 сек.
83Se 25 мин.

Шаблон:Main

Природный селен состоит из смеси 6 изотопов (в скобках указана концентрация в атомных процентах): Шаблон:SupSe (0,87 %), Шаблон:SupSe (9,02 %), Шаблон:SupSe (7,58 %), Шаблон:SupSe (23,52 %), Шаблон:SupSe (49,82 %), Шаблон:SupSe (9,19 %).

Из них пять изотопов, по экспериментальным данным по состоянию на 2024 год, стабильны, а один из них (82Se) испытывает двойной бета-распад с периодом полураспада 9,7Шаблон:E лет, превращаясь в 82Kr.

Искусственно получены ещё 24 радиоактивных изотопа (а также 9 метастабильных возбуждённых состояний) с массовыми числами от 65 до 94.

Из искусственных изотопов практическое применение нашёл 75Se как источник гамма-излучения для неразрушающего контроля сварных металлических швов и обнаружения дефектов конструкций[56].

Распространённость в природе и периоды полураспада радиоактивных изотопов селена и некоторых его ядерных изомеров приведены в таблице. Шаблон:-

Примечания

Шаблон:Примечания

Ссылки

Шаблон:Навигация

Шаблон:Внешние ссылки Шаблон:Периодическая система элементов

  1. Цитирование по статье http://www.chemistry.narod.ru/tablici/Elementi/se/Se.htm Шаблон:Wayback
  2. Шаблон:Публикация
  3. Шаблон:Книга
  4. Шаблон:Книга
  5. Шаблон:Книга
  6. Шаблон:Статья
  7. Шаблон:Статья
  8. Шаблон:Статья
  9. Шаблон:Статья
  10. Шаблон:Статья
  11. Шаблон:Статья
  12. Шаблон:Статья
  13. Riley J.P., Skirrow G. Chemical Oceanography. Vol. I, 1965.
  14. Шаблон:Cite web
  15. 15,0 15,1 Ошибка цитирования Неверный тег <ref>; для сносок ХЭ не указан текст
  16. Видеозапись нагревания селена Шаблон:Wayback.
  17. Видеозаписи попыток поджечь селен Шаблон:Wayback.
  18. Видеозапись реакции селена с натрием Шаблон:Wayback.
  19. Шаблон:Статья
  20. 20,0 20,1 20,2 Шаблон:Статья
  21. Шаблон:Книга
  22. Janghorbani, М. The selenite-exchangeable metabolic pool in humans: a new concept for the assessment of selenium status / M. Janghorbani [е.а.] // Amer J. Clin. Nutr, 1990. — V.51. — Р. 670—677
  23. Рекомендуемые уровни потребления пищевых и биологически активных веществ: МР. 2.3.1.1915-04 / ГУНИИ питания РАМН. — М., 2004. — 36 с.
  24. Методические рекомендации 2.3.1.2432-08. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. doc Шаблон:Webarchive. 4.2.2.2.2.6. Селен
  25. Шаблон:Cite web
  26. Шаблон:Статья
  27. 27,0 27,1 27,2 Струев И. В., Симахов Р. В. Селен, его влияние на организм и использование в медицине // Сб. научн. трудов «Еестествознание и гуманизм»/ Под ред. проф., д. б. н. Н. Н. Ильинских. 3(2). — 2006. — С. 127—136.
  28. Шаблон:Cite web
  29. The interactions between selenium and iodine deficiencies in man and animals. Arthur JR, Beckett GJ, Mitchell JH. — Nutrition Research Reviews. 1999 Jun; 12(1):55-73
  30. Шаблон:Статья
  31. Шаблон:Книга
  32. Шаблон:Книга
  33. Шаблон:Книга
  34. Шаблон:Книга
  35. Шаблон:Книга
  36. Шаблон:Cite web
  37. Шаблон:Книга
  38. Шаблон:Книга
  39. CIS 81-1954. «Toxicology of selenium: A review» / C.G. Wilber // Clinical Toxicology. — New York, 1980 — 17/2 — р. 171—230.
  40. IARC monographs on the evaluation of carcinogenic risk of chemical to man. Some aziridines, N-, S- and o- mustards and selenium // Lion, International Agency for Research on Cancer, * Selenium and selenium compounds, 1957 — Vol 9. — 268 p
  41. CIF 80-729. * Selenium.Vocal-Borek, H.USIP report 79-16 (University of Stockholm, Institute of Rhysics, Vanadisvagen 9,Stockholm). — Nov., 1979—220 p.
  42. CIS 77-155. Selenium. // DC, National Academy of Sciens. — Washington, 1976—203 p.
  43. CIS 80-10541. «Selenium and its mineral compound» / C. Morel [е.а.] // Fiche Toxicologique № 150. Institute national de recherche et de securite. Cahiers de notes documentaries — Securite et hygiene du traval. — Paris, 1980 — No 1244-98-80. — р. 181—185.
  44. Шаблон:Статья
  45. Шаблон:Статья
  46. Прилуцкий, А. С. Селенит натрия в терапии аутоиммунных заболеваний щитовидной железы / А. С. Прилуцкий. — «Здоровье Украины» № 11, 2012. С.37.
  47. Шаблон:Cite pmid
  48. Шаблон:Cite pmid
  49. Шаблон:Cite web
  50. Шаблон:Cite web
  51. Шаблон:Cite web
  52. Шаблон:Cite web
  53. Шаблон:Cite web
  54. Шаблон:Cite web
  55. 55,0 55,1 Шаблон:Cite web
  56. Шаблон:Cite web